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PREFACE 

These Proceedings have been organized with papers given i n  the order i n  
which they were presented i n  the Colloquium. Those papers representing 
contributions t o  the evening f i lm sessions have been placed following the 
f u l l  length papers because of the somewhat d i f fe ren t  format involved. I n  
raveral of these shorter papers are t o  be found some of the  most stimulat- 
ing presentations of 
that the authors of these f.ilm discussions have been wil l ing t o  par t ic ipa te  
by contributing what have in  many 
ongoing research. 

'The presentations of the  Introductory Session have not been included i n  
t h e m  Proceedings. In  t h i s  Session, chaired by D r .  R. J. Mackin, Jr.. 
Dr. W. E. Pickering greeted the par t ic ipants ,  D r .  F. E. Goddard explained 
the  Research and Advanced Developments Program a t  JPL. and D r .  K. M. Saffren 
gave the Introduction t o  the Colloquium. 

the  Colloquium, and the  organizers a r e  indeed gra te fu l  

cases been examples from unfinished and 

The Editors 
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IElTRODUCTION 

Interest in the science of liquid drops and bubbles extends beyond those 
who work in fundamental fluid dynamics. Workers in meteorology, chemical 
engineering, mechanical engineering, and space processing have an evident 
and very practical concern with this science. Workers in nuclear physics 
and in astrophysics use liquid drops and bubbles as models for phenomena 
in atomic nuclei, and in self-gravitating astronomical systems. 

This Colloquium provided an opportunity for workers in these various dis- 
ciplines to come together, for the first time, to - assess the present status of the science of liquid drops and 

- forecast and help determine the future directions of this 
- determine the value to this science of forthcoming opportunities 
bubbles in liquids 

science 

to perform experiments in a weightless environment. 

One aim of the Colloquium was to make evident that what might appear at 
first sight to be a narrow and proscribed science with its best days behind 
it, was none of these things. 
himself how successfully this aim was met. 
of the Colloquium is provided by Dr. Scriven's paper on page xii. 

A second aim was to help establish the future direction of the science of 
drops and bubbles by looking toward the proper balance of future work in 
theory, computation, laboratory experiment, and experiments in weightless- 
ness. 
by a single Colloquium; such a balance will probably emerge only after more 
conventions of this Colloquium'have taken place. 

Even so, the presentations do allow some general conclusions to be drawn. 
Almost without exception, theory is treated in linear approximation and 
applies to the equilibrium, or at best stationary state. While computation 
does indeed treat the non-linear dynamics of drops and bubbles it does so 
only when a high degree of symmetry significantly reduces the computational 
complexity. 
complicated effects that are taking place simultaneously makes precise analysis 
difficult. Experiments in weightlessness are relatively new. However the 
several papers presented on the Skylab demonstrations hint at the potential 
for remarkable experiments that may allow effects simultaneously present in 
earth-based experiments to be disentangled. 

Here I must confess to the personal prejudice that as this potential is slowly 
realized in the next few years, when what were demonstrations become carefully 
controlled experiments, more and more experimenters will be drawn to experi- 
ments in weightlessness, and what is learned will greatly stimulate both 

A reader of these Proceedings can judge for 
An excellent technical summary 

In retrospect this was too ambitious an aim to be met definitively 

In laboratory experiments the fact that there are usually several 



xi 

theory and computation and even r e s u l t  in  new experiments on earth.  
sently,  NASA KC 135 a i r c r a f t  f lying along a b a l l i s t i c  
t o  25 seconds of weightlessness. Soon t o  be flown as par t  of the  NASA Space 
Processing Program, sounding rockets w i l l  allow experiments times i n  weight- 
lessness up t o  10 minutes. Eventually, i n  1980, the  NASA Space Shut t le  w i l l  
provide 7 days of weightlessness, and i n  f a c t  JK is engaged i n  a project t o  
r e s u l t  i n  an experiment module being made avai lable  on the Shut t le  f o r  drop 
dynamics experiments. It is expected t h a t  fu ture  conventions of t h i s  Col- 
loquium w i l l  be under the auspices of t h i s  project  which is i t s e l f  par t  of 
the  NASA Physics and Chemistry in Space Experiments Program. 

Interdiscipl inary meetings such as t h i s  one are notoriously high r i s k  events. 
When successful, as t h i s  Colloquium was, the  presentations st imulate special- 
ist and non-specialist a l ike ,  provoking exci t ing discussions a t  sessions 
t h a t  s p i l l  over i n t o  corridors,  and i r repress ib ly  in to  the coffee and meal- 
time breaks. 
will be j u s t  as exci t ing t o  read as they were t o  hear. 

Pre- 
t ra jec tory  afford up 

Hopefully the  presentations as recorded in these Proceedings 

Dr. Melvin M. Saffren 
Chairman, Steering Committee 
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THE MOTION OF BUBBLES ANI) DROPS IN LIQUIDS 

J. F. Harper 
Department of Mathematics, Victoria University of Wellington, New Zealand 

INTRODUCTION 

The purpose for which I was honoured with an invitation to this 
Colloquium was that of pointing out some difficulties which have not been 
resolved, especially those which seem to provide opportunities for future 
useful work. 
and the experiments which they explain. For a bubble or drop moving through 
a liquid under steady external forces, that has been done first by Levich (l), 
on whose work almost all later theory is based, and more recently in Refs. 2, 
3, 4. 
mentioned here. Too little attention was paid to numerical work (5,6), to 
recent studies of raindrops (7,8) and to the stagnant-cap theory (see below), 
and there are some errors in the thermodynamic treatment of adsorption: 
temperature changes must be neglected in order to obtain equations (4.4) and 
(4.5) of Ref. 2, and the physical interpretation of r on the following page 
is too simple. 

INSTABILITY 

It was not primarily that of reviewing well-known theories 

Some defects have come to light in Ref. 2, which could usefully be 

A list of minor misprints will be provided on request. 

The first difficulty and opportunity which I wish to mention is this. 
For many years now experimenters have disagreed on the criteria for stability 
of the steady rise of a gas bubble in a pure liquid. Let us define 

M = gr1~1pu~ , (1) 

where g is the acceleration due to gravity, rl is the dynamic viscosity 
of the liquid, p its density and u its surface tension. Then some 
experimenters (9,lO) find that bubbles of any size will rise stably in any 
liquid with M > , while others (3) have observed instability at M > 
in circumstances quite similar to those of Ref. 10. 

If M it appears that marginal instability occurs when the Weber 
number 

W = pU2d/u # 3 , (2) 

where U is the velocity and d is the equivalent spherical diameter of 
the bubble. The reason is well known: small changes in d then give rise 
to very large changes of shape and hence U, (2,11,12), and so steady-state 
theory predicts that quite different shapes and hence flows can almost co- 
exist for the same bubble. But what is not well understood is the type of 
motion which occurs when steady flow does become unstable (9,13). 
bubbles rise in either helices or plane zigzags, and there seems to be no way 
to tell which will occur in any given case. If anything, the present theoret- 
ical confusion is worse. 
is suitably started (13), but only if the bubble is also subject to the other 
instability as well, and the type of motion predicted for that case is not 
zigzagging but monotonic wandering away from a vertical path. 
unsatisfactory to have been left for seventeen years wondering, but not 
knowing, whether surface-active impurities are some way responsible (20). 

Experimental 

Spiralling has been shown to persist if the motion 

It is 
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THE WATER ANOMALY 

Another phenomenon where the same suspicion arises might be called the 
"water anomaly". Provided that W 0.5, bubbles are very nearly spherical, 
and their graphs of drag coefficient against Reynolds number follow the 
familiar universal curve for solid spheres if their surfaces are dirty, and 
a somewhat lower universal curve (14) if clean. But even the most carefully 
distilled water appears to behave in the same way as filtered (but undistilled) 
water, by following the solid-sphere curve if R = Ud/v < 100, where 
kinematic viscosity, and then gradually approaching the clean-surface one 
until R = 500, by which time distortion from a spherical shape has become 
important. 
for pointing out to me how strong the evidence in Ref. 14 is), it must mean 
that all so-called "clean" water has the same non-zero amount of the same 
surface-active impurity dissolved in it. 
by the fact that a 13% alcohol solution in water behaves like a normal pure 
liquid (14). 

v is the 

If that is a real effect, (and I am indebted to Dr D W Moore 

The mystery is apparently deepened 

The only obvious suggestion to make is that at least one of the natural 
chemical components in water exposed to the air is surface-active enough and 
abundant enough to act as the "impurity". 
always charged, and the electrical conductivity of water is notoriously 
about 10 times as high in the presence of ordinary air as when the carbon 
dioxide is carefully remved, we are led to consider water as a 
molar solution o f  H and HCO -. The diffuse (Gouy-Chapman) double layer 
at the surface is tien about 3dO nm thick (15), and we can estimate the 
effect on the surface tension in order-of-magnitude terms as follows. 
that we take the potential difference across the double layer to be 0.1V, 
and then the energy in a capacitor with plates 300 nm apart and a water 
dielectric is about 
ence of 

Because a free water surface is 

roughly 

Suppose 

J m-2, which corresponds to a surface-tension differ- 
mN m-' between H 0 and the ionic solution. 

2 

That does not seem to be enough of a surface pressure to interfere with 
a bubble 1 mm in diameter rising at 0.2 m 6-l , but there is a magnifying 
mechanism for it. A rising bubble with a free surface is so efficient at 
sweeping any small amount of adsorbed impurity round to its rear stagnation 
point (16) that whenever the motion is visibly retarded, the surface must be 
totally clogged around that point, though it might well be effectively free 
and unpolluted over the forward part of the bubble. This is, of course, the 
"stagnant-cap" hypothesis (17). Now convective diffusion onto a freely 
moving surface is very much more efficient than off a surface at rest, and so 
the surfactant concentration at the rear stagnation point of a rising bubble 
will be many times its value at a stationary fluid surface in equilibrium. 
Detailed calculations are so far available only for a very small stagnant cap 
on a bubble rising at low Reynolds number (18), but magnification factors of 
10 or 20 for the surface pressure seem entirely reasonable. 
how Davis and Acrivos (17) found it a good approximation to use in their 
theory the maximum possible surface pressure of which a given surfactant was 
capable, even if the bubble was rising in quite a dilute solution, and it 
would also bring up the electrical surface pressure for water to 0.1 or 
0.2 mN m-l at a rear stagnation point. Our only guide to the effect on a 
bubble is Moore's theorem (16) for the drag coefficient, i.e. 

That would explain 

(3) 

I 

! 

i 

where p is the cosine of the polar angle 0 measured from the front 
stagnation point. This theorem holds when the flow is slightly perturbed 



302 

from irrotational, which is not accurately true here, but it seems that the 
surface pressure could perhaps suffice to explain the observed effects. 

Obviously there is plenty of scope here for future work, both experimental 
on bubbles rising in water with the carbon dioxide removed (and with the 
conductivity simultaneously measured to check on it), and theoretical for a 
stagnant cap on a sphere at high Reynolds numbers, somewhat resembling Leal's 
(19) calculation for an analogous two-dimensional flow. The numerical work 
will not be easy: there are more independent dimensionless parameters than 
one would like, and even small Reynolds numbers gave some trouble (17). 

LOW P~CLET-NUMBER now 
Let us turn to a problem where the theoretical difficulties are quite 

minor. If a bubble or drop moves in an ideal surfactant solution at low 
Peclet number P = Ud/D (and therefore low Reynolds number because v >> D 
for all ordinary surfactants in all ordinary liquids), the motion and the 
distribution of surfactant are remarkably easy to find (21, even when diff- 
usion through both bulk phases and along the surface is allowed for simult- 
aneously. 
working out the effects of more complicated physical chemistry (such as 
the surfactant approaching the critical micelle concentration, or undergoing 
chemical reactions, possibly slowly enough to hold up its diffusive transfer), 
but for two objections. 
to be visible with the naked eye, and even if there were some good means of 
observing tiny bubbles rising, the liquid would have to be extraordinarily 
pure for them to act as anything but small rigid spheres. 
difficulty is a challenge to a surface chemist, but the first could only be 
overcome in space. That is because U on earth is always between gd2/18v 
and gd2/12v (the Stokes and Hadamard-Rybczynski values), and so 

It would therefore seem to be a good system in which to try 

Low PQclet numbers are unusual in bubbles big enough 

The second 

gd3/18vD P < gd3/12vD (4) 

To get d up to 0.1 mm would require g to be reduced to a thousandth of 
the usual 9.8 m s ' ~  , and obviously greater reductions would allow for larger 
bubbles. 

One reason why this Colloquium was called was "to determine the value 
to this science of forthcoming opportunities to perform experiments in a 
weightless environment". There seems to be no point in suggesting that any 
experiment be done in space if it is feasible on earth, but we seem to have 
here an experiment which is impossible on earth and which might tell us some- 
thing important about surface chemistry in very dilute solutions. 
be interested to learn whether the "rise" of small bubbles in a very highly 
purified liquid constitutes an experiment feasible in space. 
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THE P E " T  DROP: THEORY AND EXPERIMENT 

by A. A. Kovitz 

Department of Mechanical Engineering and Astronautical Sciences 
Northwestern University, Evanston, I l l i n o i s  60201 

ABSTRACT 

The spectrum of s t a t i c ,  axisymmetric pendant drop shapes is studied, both 
experimentally and theoretically.  
based on the Young-Laplace equation, y ie ld  possible pendant drop shapes as a 
one-parameter (a non-dimensionalized pressure jump at the drop apex) family 
of curves. These resu l t s  are interpreted i n  terms of varying contact circle 
radius and hydrostatic pressure i n  the contact circle cross-section, fo r  any 
fixed value of i n t e r f ac i a l  tension and density difference across the in te r -  
face. 
varied, and the i r  relationship t o  the calculations evaluated. 

Calculations, both numerical and analytical ,  

Experiments were conducted i n  which the above noted parameters were 

The calculated family of solution curves is bounded by two envelopes; one 
gives the high pressure l imit  for  existence of static drops; the other gives 
the low pressure l i m i t .  For given in t e r f ac i a l  properties, and fixed contact 

. c i rc le  radius, multiple solutions ex i s t  between these two pressure extremes. 

Experiment shows tha t  two pendant drops are observable for  a given con- 
tact c i r c l e  radius and pressure; one i s  s t a t i c a l l y  s tab le ;  the other is 
s t a t i c a l l y  metastable. 
each other; at a cer ta in  maximum pressure they coalesce in to  OM pendant drop 
shape; any higher pressure r e su l t s  i n  dripping. It was a l so  ver i f ied  tha t  
drops suddenly break off when the low pressure l imit  i e  approached. 

With increasing pressure these two shapes approach' 

S t a t i c  s t a b i l i t y  conclusions have recently been reported by a number of 
authors using energy methods; the  d i r ec t  experimental ver i f ica t ion  herein 
reported (except for  SUE unpublished r e su l t s  t o  be noted), and the ana- 
l y t i c a l  r e su l t s  fo r  high and low pressure drops appear t o  be new. 

INTROCUCT ION 

A pendant drop is formed when the denser of two contiguous f lu ids  is 
suspended below a closed, capmon curve of contact between the f lu ids  and a 
fixed solid;  implicit  i n  t h i s  description is the supposition that the con- 
figuration i s  i n  static equilibrium under the influence of gravitational and 
surface tension forces. The axisyamnetric case, which arises when the con- 
tact curve is a c i r c l e  whose plane i s  perpendicular t o  the gravitational 
force, has received much a t ten t ion  both by ea r ly  and recent investigators. 
The ear ly  work focused mainly on determination of the pendant drop shape, 
through solution of the governing Young-Laplace equation, and i t s  use i n  
measurement of surface tension. The most recent work is  concerned with the 
static s t a b i l i t y  of pendant drops, primarily through application of varia- 
t iona l  techniques on the energy of the system. 

This paper is  a l so  concerned with the s t a t i c  s t a b i l i t y  of pendant drops. 
Conclusions w i l l  be deduced from the family of drop shapes determined 



305 

numerically and analytically from the Young-Laplace equation rather  than an 
energy approach. Certain resul ts ,  for essent ia l ly  low and high pressure i n  
the contact c i r c l e  cross-section, w i l l  be obtained analytically. Finally, 
these s t a t i c  s t a b i l i t y  conclusions w i l l  be shown t o  compare well with 
experiment. 

Although the s t a b i l i t y  l i m i t s  t o  be ci ted here have also been recognized 
i n  recent work using energy methods, they appear i n  a more compact and con- 
cise way through the interpretation of boundary envelopes t o  the pendant drop 
solution curves. Experiments focused on verifying these static s t a b i l i t y  
l i m i t s ,  and the observation of cer ta in  multiple solutions, do not appear t o  
be i n  the l i t e ra ture .  However, many experiments on the breakaway volumes of 
pendant drops are reported, with the object of obtaining empi r i ca l  equations 
useful i n  the drop-weight method for  surface tension; Padday and P i t t  ( i n  a 
1973 paper referred t o  l a t e r )  give many references for these experiments. 

No paper on pendant drops can f a i l  t o  note the fundamental work of Young 
(1) and Laplace (2). These researchers established the general governing 
equation for i n t e r f ac i a l  surfaces and obtained solutions for limiting cases. 
Laplace (2), i n  particular,  already recognized the a b i l i t y  of the in t e r f ac i a l  
equation t o  yield iaformation on s t a t i c  s t ab i l i t y .  

The f i r s t  comprehensive, and s t i l l  useful, numerical treatment of the 
Young-Laplace equation i s  due t o  Bashforth and Adams (3). 
tables for drop shapes as a function of a "shape parameter", which i s  related 
t o  the apex pressure parameter t o  be used here. Lohnstein (4) obtained ap- 
proximate r e su l t s  for the l imiting volume of drops a s  a function of contact 
circle radius. 
finding more accurate values of surface tension. Bakker (5) has sumarized 
r e su l t s  up t o  1928 for numerical computation of drop shapes and t h e i r  prac- 
t ical  application. More recently, Padday (6) and Princen (7) have given 
extensive and excellent reviews of the experimental and mathematical state 
of the art ,  up t o  1968, for determination of i n t e r f ac i a l  shapes and surface 
tens ion. 

They published 

These r e su l t s  were used i n  conjunction with a method for 

Much current work on pendant drops concerns t h e i r  s t a t i c  s t ab i l i t y .  
Padday and P i t t  (8) present a comprehensive study of the static s t a b i l i t y  of 
three types of axisymnetric interfaces,  including pendant drops. Their re- 
s u l t s  are based on an application of the energy method, using the extensive 
numerical r e su l t s  of Padday (9) t o  evaluate the f i r s t  and second variations 
of the energy integral .  Padday and P i t t  (8) a l so  note the appearance of 
bounding envelopes, and interpret  them with respect t o  static s t ab i l i t y .  
Their paper careful ly  c l a s s i f i e s  many types of s t a b i l i t y  phenomena, with 
detailed descriptions of meniscal behavior under a var ie ty  of constraints. 
P i t t s  (10) avoids the numerical approach of Ref. (8); i n  t h i s  way he i s  able 
t o  include more general perturbations i n  pendant drop shape; i t  i s  not clear 
tha t  h i s  s t a b i l i t y  boundaries d i f f e r  from those of Padday and P i t t  (8). 

Related theoret ical  studies by Gi l le t te  and Dyson (11,12,13) consider 
the s t a b i l i t y  of l iquid bridges, and dis joint  capi l lary system, based on 
variational principles. Orr, Scriven, and Rivas (14) report  on new re su l t s  
for  l iquid bridges (or pendular rings). 
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FORMULATION OF PROBLEM 

I 

I 

Figure 1 is a schematic of the pendant drop with dimensional coordinate 
system. The basic Young-Laplace equation (see, fo r  example, Refs. 6,7) re -  
la t ing  the pressure difference across an interface t o  the in te r fac ia l  curva- 
tu re  and in t e r f ac i a l  tension is 

AP P+ - P, = d / R 1  + , (1) 

where p+ and p, are the local hydro- 
static pressures on e i ther  s ide of the 
interface,  R 
pr incipal  r a h  of curvature of the 
interface,  and Q is the in t e r f ac i a l  
tension. L e t  p, and pc, be the 
pressures i n  the plane of the contact 
circle, inside and outside the drop, 
respectively; i f  and p- are the 
corresponding f l u 2  densi t ies  (with 
p+ > p-), and g the gravi ta t ional  
force per un i t  mass i n  the negative 
f direction, then 

and R2 are the local 

AP = P& - Pc, + pgf, - Paf 8 (2) 

f 

1 
1 

5 

Y contact circle (tip) 
h 

- -S- - 
-r 
I 

where p 3 p+ - p-, f 
tance from the apex df the drop t o  i ts  
contact c i r c l e ,  and f is the distance 
fran the apex t o  the plane where ~p is 
measured. Introduce the meniscus con- 
s t an t  (a length) 

i s  the dis-  Fig. 1. Schematic of pendant drop 
showing dimensional coordi- 
nate system. 

k Julpg , 
and the non-dimensional lengths 

x I r/k , y = f /k  ; (3) 

these are ident ica l  t o  the variables used, among others, by Huh and Scriven 
( U ) ,  and Kovitz (16). It is convenient t o  introduce the non-dimensional 
pressure difference across the interface 

-W 6 &lpgk = G - y , (4 1 

where 

is the non-dimensionalized pressure difference across the interface at the 
drop apex. It may be ver i f ied  tha t  

G = 2k/b * 218 11 2 
s 



307 

where b is the single radius of curvature at the drop apex, and $ i s  the 
Bashforth and Adams "shape factor" used by many authors; see, for example, 
Refs. (3,6,7,8,9). Only positive values of G w i l l  be considered i n  th i s  
study; it w i l l  be seen (on Fig. 2) t ha t  t h i s  restricts the discussion t o  
drops with apex below the contact c i r c l e  plane. 

The non-dimensionalized pressure difference a t  the contact c i r c l e  cross- 
section is 

In  Ref. 8 the "hydrostatic pressure a t  the t i p "  is denoted by pgZt = Pc+ - pc-; 
since pressure var ies  l inear ly  with ve r t i ca l  distance, Zt/k is used there 
instead of y, as  the dependent variable. 

I f  R1 and R2 are writ ten i n  terms of x, y = G + w, and cp (see Fig. 1) for  
the axisynrmetric case,Eq. (1) becomes a pair  of f irst-order ordinary differ-  
e n t i a l  equations for  w(cp) and x(rp); 

w '  = -sillcp/(w+sinQ/x) , 
x' = -coscp/(w+ sirrcp/x) , (7) , 

with boundary conditions 

Development of Eqs. (7) i s  outlined i n  Refs. (15,16) with additional dis-  
cussions i n  Refs. (2,6,7,10). 

Equations (7) may be expressed as a single second-order ordinary differ-  
e n t i a l  equation for w(x) ; 

w" = T w(1+wJf/2 - w(l+w'2)/ x , 

where f is t o  be used when w' & 0, respectively. 

INTERPRETATION OF NUMERICAL SOLUTIONS 

A standard Runge-Kutta f i n i t e  difference technique w a s  found adequate t o  

The i n i t i a l  values 
solve the system, Eqs. (7). 
Laplace equation may be found i n  the appendix t o  Ref.' 10. 

Further discussion on integration of the Young- 

for 0 c '9 << 1, were obtained by series solution of Eqs. (7): W(Y1) 9 X(cp,) 9 1 

With 
'p1 = 
over 

-1 2 W('9,) = -G + G rpl + O((p41) , 

cp and G chosen, the numerical procedure yielded w(cp:G), x(cp:G); with lib6 the numerical r e su l t s  matched Eqs. (9) t o  five significant f igures 
a substantial  range of cp > (pl. This insured tha t  the solution was 

I , - . . .. -. . .. . . . 
I 

! 

i 
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independent of q, as long as G 2 .25. 
be discussed i n  a later section. 

Solutions f o r  small and large G w i l l  

Results of the numerical solutions of Eqs. (7) are shown i n  Fig. 2. 
Each curve, w(x;G), starts at w(0;G) = -G; shown i n  the figure are curves fo r  
integer values of 1 s  G 5 7, as-well-as G = 3.5, 2.5, 1.5, .50, .25, and a 
segment of G = 2.75. The most s t r ik ing  feature of these in tegra l  curves is 
the appearance of envelopes which bound their undulating portions. Padday 
and P i t t  (8) a lso  notice one of these envelopes (see the i r  Fig. 14), corre- 
sponding t o  AIBICIEl on Fig. 2. Camparison with t h e i r  Fig. 14 shows sensible 
agreement with Fig. 2, with the possible exception of the neighborhood of El; 
it w i l l  be seen tha t  the location of the envelope terminus El i n  Fig. 2 is  
determined by an analytical  solution of Eqs. (7) fo r  small values of G, 
whereas Padday and P i t t  (8) used a "fairing in" technique t o  obtain the i r  
envelope. Although Padday and P i t t  (8) cement on the physical consequences 
( t o  be discussed below) implied by the envelope +B C2E2 i n  Fig. 2, they do 
not exp l i c i t l y  recognize its existence i n  the x,w-pfane. 

The reader is directed t o  Ref. 8 fo r  an a l te rna te  and detailed descrip- 
t ion  of the s t a t i c  s t a b i l i t y  phenanena t o  be described below. 
P i t t  (8) identify pendant drops with t i p  coordinates on the AIBICIEl envelope 
as exhibiting "pressure-radius limited s tab i l i ty" ;  those with t i p  coordinates 

Padday and 

envelope demonstrate Ilvolume-radius limited stabil i ty".  
limited drops becaae unstable with volume perturbation (for 

fixed t i p  pressure) a t  t he i r  s t a b i l i t y  l imi t ;  volume-radius limited drops 
become unstable with pressure perturbation (for fixed volume) a t  their 
s t a b i l i t y  l imit .  
ment with those t o  be discussed herein. 
associated with the A2B2C+E2 envelope which w i l l  be noted when it is en- 
countered. 

Most of the conclusions enunciated i n  Ref. 8 are i n  agree- 
However, there is a difference 

The physical implications of Fig. 2 may&understood as follows: 
a given value of the meniscus constant k = */a/pg, and a given contact c i r c l e  
radius "a1t, the abscissa 

for  

x CI x = a/k (10) a 
is determined; for  a given pressure difference, pet. - pc-, in the contact 
c i r c l e  cross-section 

is determined fram Eq. (6). 
which may pass curves G = constant > 0; each of these curves (each with a 
different value of G ) ,  s t a r t i ng  at w(0;G) - -G, and terminating at xa, wa, 
represents a static pendant drop configuration such tha t  

This specifies a point xa, wa on Fig. 2 through 

y(x) = G + w(x) . (12) 

It remains t o  discuss which of these curves represent s tab le  drops (i.e., 
physically observable ones), and t o  note tha t  fo r  a given xa there are values 
of wa such tha t  no values of G ex i s t ,  or at most only one. 
example, xa = .34, wa = -3.86; the two smallest values of G fo r  t h i s  point 

Consider, for  
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I. 2. 3. 4. 5. 6. 
I 1 I I I I I I I I I I I 

-.35 3.30 
.IO 

Fig. 2. Family of pendant drop profiles,  and bounding envelopes, for  the 
apex pressure parameter G = -w(O;G). E l  and E2  (a t  x equal t o  the 
f i r s t  two roots of Jo(x) = 0 )  are the termini of the high-pressure 
envelope (AIB CIE1), and low-pressure envelope (A2B2C$ ), respec- 
t ively.  Envelope approximations dl and BEp are given i n  Eq. (24); 
A BICl is  given by Eq. (20). The data points (A,V) correspond t o  
the experimental data summarized i n  Table I. The sequence of pro- 
f i l e s ,  for  x = .34 and 1.18, respectively, show drop shapes from 
maximum t o  m h n n r m  t i p  pressure, with associated values of wa and G. 

t 

I 

I 

I 
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I 

are G = 4.00, 4.65. The drops corresponding t o  these specifications are shown 
on Fig. 2 as  second from the l e f t  along the upper row of individually drawn 
pendant drops. Typically, the drop with the smallest G value (G = 4.0 i n  th i s  
case) does not touch the A1B C El envelope, while tha t  with the next larger G 
value (G = 4.65 i n  th i s  casei 1s tangent t o  t h i s  tfouterlt  envelope, 

With xa = .34 the upper row of pendant drop shapes i n  Fig. 2 r e f l ec t  the 
range of wa values for  which at least two values of G ex i s t ;  a t  w = -5.70, 
xa = .34 intersects  the outer envelope; a t  t h i s  point only one vafue, G = 6.0, 
ex is t s ;  for  Iwal > 5.70 no solutions exist. A t  the other extreme, xa - .3k 
intersects  the A2B C E (inner) envelope at  wa = -1.45 with G = 1.15, 3.30; 
for  0 < Iwal < 1.41 zniy one solution exists. 

same features of the solution. 
fo r  wa - .10 > 0, corresponding t o  pc+ - pc, < 0, for  which only one drop 
(G = 3.0) exis ts .  

The second row of drop shapes i n  Fig. 2 i l l u s t r a t e s ,  for xa = 1.18, the 
In  t h i s  case the inner envelope l i m i t  occurs 

The physical implications of the above discussion for  a given xa ( t i p  
radius) are: 

(a) at leas t  two pendant drop shapes ex i s t  for  each value of -wa ( t i p  
pressure) within a cer ta in  range of permissible values; experiment 
w i l l  ver i fy  that  the drop corresponding t o  the smallest value of G 
(smallest pressure difference a t  the drop apex), for  each permissi- 
b le  value of Wa, is s table  (wil l  occur naturally);  experiment w i l l  
a l so  ver i fy  that  its %onjugate" drop ( tha t  for  the next largest  
value of G, but the same xa, wa) is metastable (can be observed 
experimentally, but under any perturbation it e i ther  contracts t o  
the s tab le  drop or  elongates continuously u n t i l  sudden break-off 
occurs) ; 
i f  -wa is greater than a critical value determined by intersect ion 
with the outer envelope no s tab le  drop ex i s t s  (dripping occurs); 
if -wa is  less than another c r i t i c a l  value determined by in te r -  
section with the inner envelope, the metastable drop does not 
ex i s t ;  experiment w i l l  ver i fy  that  t h i s  prediction corresponds t o  
the sudden break-off of a quasis ta t ical ly  elongating (metastable) 
drop, with no constraints on volume or contact angle, whose 
sequence of shapes (for a given xa) is  closely approximated by the 
two rows of drops (sol id  curves) shown i n  Fig. 2. 

(b) 

(c) 

It may be shown tha t ,  i n  general, a f i n i t e  number (greater than 2) of G 
values ex i s t  for  a given xa, fo r  each wa within the permissible range deline- 
ated by the envelopes. However, a l l  drop prof i les  for  G greater than the two 
smallest values touch both envelopes before reaching xa, wa. 
were never observable with the apparatus and experimental procedure t o  be sub- 
sequently &scribed. 

These drops 

Finally, it should be noticed tha t  

(a) s table  drops ex i s t  for  t i p  r a d i i  E 
pressure -w < 0; 

< x l a  < E2 only i f  the t i p  

a 
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(b) "0 stable  drops ex is t  for  xa > E2; t h i s  upper bound does not appear 
t o  be recognized i n  Ref. 8;  therefore the "bath tap profile" shown 
there as Fig. 9 i s  questionable t o  t h i s  writer. 

Both E and E 1 2 are determined analyt ical ly  i n  a later section. 

ASYMPTOTIC SOLUTIONS FOR LARGE AND SMALL G 

For large G (meaning large in te r fac ia l  pressure differences a t  the drop 
apex) the apex curvature i s  large; t h i s  causes the l inear  pressure var ia t ion 
over the drop in te r ior  due t o  gravity t o  be s m a l l  compared t o  the mean 
pressure within the drop; see Fig. 2. Thus gravity e f fec ts  are small com- 
pared t o  the influence of in te r fac ia l  tension; the drop shape i s  closely 
approximated by a spherical  segment. 

I f  G i s  s m a l l  (meaning s m a l l  in te r fac ia l  pressure differences a t  the 
drop apex) the apex curvature i s  s m a l l ;  i n  t h i s  case the slope of the inter-  
fac ia l  surface i s  everywhere small so tha t  the drop shape i s  closely approxi- 
mated by a l inearized version of Eqs. (7). 

Details of the solution t o  Eqs. (7) f o r  large and small G w i l l  be given 
elsewhere. Both solutions are at ta inable  as series expansions i n  terms of 
negative and posit ive powers of G for large and small G, respectively. 
These developments are i n  the s p i r i t  of the analysis given by Concus (17) 
for  menisci internal  t o  c i rcular  cylinders, and the solutions for  rod-in- 
free-surface menisci i n  Ref. (16). 

For large G: 

w(cp;G) - -G + G-lwl(cp) + G - 3 ~ 3 ( 4  + O(G'5) 

x(Q;G) = G-'x,(rp) + Ge3x3(rp) + 0(G'5) 

, 

; 

where 

For small G: 

w(x;G) = -GJ0(x) 

I 
t 
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where J (x), Yi(x) are Bessel functions of the f i r s t  and second kind, 
respect fve ly,  and 

4 L2(x) f zJl(z)dz . 
0 

The solution for  large G exhibi ts  the expected near spherical  shape since - -1 - -1 w - -G + 26 (l-COSQ) , x - 26 sincp , 
-1 are parametr c equations for a c i r c l e  of radius 2G with center at  (x = 0, 

admit an inf lect ion point; therefore, it can describe the drop shape i n  the 
neighborhood of the outer envelope (AlB1C1 i n  Fig. 2), but cannot be used t o  
give the drop shape i n  the neighborhood of the inner envelope (A2B2 i n  Fig. 2). 

The small G solution has as  i t s  leading term the solution t o  a linear- 

w = -G + 26' f ). However, the representation given by Eqs. (13-18) does not 

ized form of Eq. (8), namely, 

W(X) = -GJ0(x) . 
This solution was obtained by Rayleigh (18) for  the case of nearly f l a t  
interfaces . 
ENVELOPES OF SOLUTIONS 

The large and small G pendant drop solutions, given i n  the previous 
Analysis proceeds i n  the section, may be used t o  obtain envelope curves. 

same way as  i n  Ref. 16. The basic point i s  tha t  an envelope curve is tan- 
gent t o  a l l  members of the single parameter family of curves; there may be 
more than one envelope, which is the present case. 

For large G, Eqs. (13-18) may be shown t o  require 

( 2 0 )  
2 

G (9) X1($Wi(~)/Xi(~) - ~ 1 ' 9 )  - X;<(p>/Xi($ 3 

-- on the envelope. Eq. (20), together with Eqs. (13-18) yield the envelope 
curve. Within 
the scale of Fig. 2 one sees tha t  the agreement with a possible "faired-in" 
envelope is excellent up t o  the neighborhood of point C 

This curve is shown as the dotted contour AIBICl on Fig. 2. 

1' 

For suff ic ient ly  large G, Q on the envelope approaches 1712. There an 
approximate solution for  the outer envelope may be writ ten as 

w(x) - -2/x , (21) 

i n  the large G l i m i t .  
e r ror  for  G 2 8.0; with G 2 15.0 the e r ro r  is within 0.1%. 

This approximation can be used with no more than 5% 
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The envelope for s m a l l  G i s  obtained from Eq. (19). Define a function 

3 
f(x,w,G) - w + GJo(x) + G F(x) , 

where F(x) is the coefficient of G3 i n  Eq. (19). On the envelope 
I 

af (x,w,G)/aG = 0 . 

-- on the envelope, for suff ic ient ly  small G;  i.e., x must be such tha t  G is 
small. Eqs. (19) and (23) allow the determination of the envelope curve 
w(x) for  small G. 

Numerical evaluation of Eq. (24) shows tha t  i n  the neighborhood of the 
f i r s t  zero of Jo(x), i.-e., for x L x = 2.4048 * * *  , 

0 

Jo(x) 2 0 , F-(x) < 0 ; 

therefore, real values of G ex i s t  for x s x0. In the region xo L x s xl, 
where x1 = 5.5201 - 0 .  is the  second zero of Jo(x), J (x) s 0, and F(x) passes 
through zero and becomes positive. ~ Therefore there 7s a second region i n  
the neighborhood of x s x1 where real values of G again exist .  These two 
branches of Eq. (24) are plotted i n  Fig. 2 as  the curves a E 1  and BE2, 
respectively. It may be ver i f ied tha t  these envelope curves possess zero 
slopes f r m  the l e f t  and r ight  a t  El and E , respectively. The numerical 
curves fo r  s m a l l  G appear t o  agree very well with the analyt ical  envelope 
segments a E 1  and BE2. 
(AlBlC1); BE2 is the s m a l l  G portion of the inner envelope (A2B2C2). 

a E 1  i s  the small G portion of the outer envelope 

These r e su l t s  indicate tha t  for  t i p  r a d i i  such that El c xa < E2 no 
s table  pendant drops can e x i s t  for positive t i p  pressures. 
xa > E2 stable drops cannot ex is t ,  even when the t i p  pressure is negative. 
The xa < E 1  bound was recognized exp l i c i t l y  by P i t t s  (10). 

Furthermore, when 

Any successful analysis for the inner envelope when G is large requires 
asymptotic drop solutions tha t  admit inf lect ion points. 
solution has been obtained using a crude integral  approximation t o  the solu- 
t i o n  of Eqs. (7) i n  which an integrand is expressed through assuming the shape 
t o  be spherical. 
(with (p - nl2) 

Only a limiting 

This yields for the x-coordinate of the inner envelope 

X -  (16/3)G'3 . (25 ) 

To t h i s  approximation the w-coordinate is simply w -  -G. 

This tentative r e su l t  for the inner envelope i n  the l imit  of i n f in i t e  
G allows one t o  understand why pendant drops foxmed a t  very small t i p  r a d i i  
have relat ively large drop r a d i i  as  they "drip off". 
approximated by the x-coordinate of the outer envelope, x .CI - 2 1 ~ -  216 (from 
Eq. (21)); the t i p  radius is given by the x-coordinate of the inner envelope, 

The drop radius is 

, 

! 
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! 

, 

Eq. (25). Therefore, drop radius/t ip radius - 3G 2 18, o r  

(26) drop radius - [(3k 2 /2) ( t i p  radius) 1 1/3 

as t i p  radius -. 0, G - OD. 

small pendant drops simply by dripping from the end of a small t i p ;  t h i s  
is confirmed by experience. 

It would appear t o  be d i f f i c u l t  t o  produce very 

EXPERIMENTAL PROCEDURE AND DATA REDUCTION 

Experiments were conducted t o  test the va l id i ty  of the theroet ical  con- 
clusions. 
duced, photographed, and the i r  relevant properties measured. The acidic 
aqueous solution (19) was used t o  minimize well-known surface aging e f f ec t s  
(20), which may r e su l t  i n  time dependent values of surface tension for  an 
interval  (order of minutes) a f t e r  formation of a n e w  surface. Direct 
observation of the stationary appearance of a newly formed drop ( a t  least 
for the period of t h e  necessary t o  take data) confirmed tha t  surface aging 
did not introduce appreciable errors .  

Pendant drops of a .1 normal HCL-H20 solution i n  a i r  were pro- 

A schematic of the experi- 
mental apparatus is shown i n  Fig. 
3; the caption r e l a t e s  the 
identifying letters t o  the sys- 
t e m  elements. A l l  tubing is 
f i l l e d  with the cormnon liquid 
consti tuting the reservoirs and 
pendant drop. 

Steps i n  a typical  data 
taking event are as follows: 

nan 

c 

(a) with a l l  stopcocks 
closed except h5, the ve r t i ca l  
ar t iculat ion is adjusted so tha t  
surfaces b and g communicate a t  a 
common level; the t i p  e (without 
drop) is lowered t o  touch g; t h i s  
establishes the zero reading on 
the d i a l  indicator f a t  which e 
(the contact circle location with 
known radius a) is at  the same 
level as the " inf ini te  reser- 
voir  b; 

(b) the stopcocks are 
adjusted so tha t  reservoir b and/ 
o r  the micro-syringe c communi- 
cates, a t  the operator's dis- 
cretion, with the t i p ;  

Lh t 
Fig. 3.  Seheanatic ef axperimcntal 

apparatus: (a) f i l l i n g  reser- 
voir;  (b) tip-pressure reser- 
voir ;  (c) micro-syringe device; 
(d) ve r t i ca l ly  ar t iculated t i p  
holder; (e) interchangeable t i p ;  
( f )  d i a l  indicator;  (g) ver- 
t i c a l l y  ar t iculated t i p -  leve 1 
reservoir;  (h) f lexible  
constant-volume tubing: (k) 

_ .  - . 
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(c) 

(d) 

the ve r t i ca l ly  ar t iculated t i p  i s  moved relat ive t o  the reservoir 

once a pendant drop has been produced which i s  stationary upon 
b, and the micro-syringe i s  manipulated t o  produce a desired pendant drop; 

communicating e w i t h  b, the t i p  pressure hp P (pc - p J/pg is read 
direct ly  from the d i a l  indicator (with ,001 inch 3ivisfons) ; 

(e) the stationary pendant drop i s  photographed. 

To produce a drop a t  maximum Isp, fo r  a given t i p  radius a,  requires the 
gradual lowering of e u n t i l  it i s  no longer possible t o  observe a stationary 
drop when b c m u n i c a t e s  with e. Phenomena associated with drop development 
and break-off w i l l  be described i n  the next section; a t  t h i s  point assume 
tha t  np,, can be determined. 

i t  i s  necessary t o  know the meniscus constant k I &/pg. This. length may be 
determined from knowledge of hpma F i r s t ,  
recognize tha t  the contact point Txa,w ) corresponding t o  maximum contact 
circle pressure must l i e  on the A BIClbl envelope in Fig. 2; second, observe 
tha t  the r a t i o  w/x = (pressure diiference across the interface at  f ) / ( r ad ia l  
distance of interface from axis of symmetry) must equal @/a fo r  w - wa and 
x = x,. Thus, the locus of possible contact circle points i n  the x,w-plane 
for which hP and a are known must be on the s t ra ight  l ine  

Before any comparisons between theory and expe-nt can be attempted 

and the contact c i r c l e  radius, a. 

w/x = -AP/a . (27) 

When np = hpmaxr the intersection of the s t ra ight  l ine  w/x = -APmax/a with 
the envelope A B C E gives the contact point for maximum pressure xa,wal, 
say. Once xa is’s; ietermined, 

k = a/xa . (28) 

This preacrip- 
A tes t  of the accuracy of the method is t o  compare the experimental 

drop shape a t  npm 
t i o n  for finding a may be cwpared with tha t  used i n  Ref. 16 for obtaining k 
i n  the case of rod-in-free-surface menisci. 

with tha t  given by the numerical results.  

The minimum pressure contact point, for the same xa, should correspond 
t o  the intersection of x = xa with the envelope A2B2C2E2 of Fig. 2. 
would determine xa, w 

This 
say, so tha t  ae * 

To produce a drop a t  minimum Pp requires the gradual ra is ing of t i p  e 
u n t i l  a static-elongated drop can no longer be produced by manipulation of 
micro-syringe c and conmunication of e with b; i n  principal, t h i s  experi- 
mentally determined minimum pressure, as read by the d i a l  indicator, should 

as given by Eq. (29). *min,e 
An alternate procedure for  determining Pmin e i s  t o  close stopcock .C, 

A t  a cer ta in  maximum length 
Since the system i s  static before break-off, 

(with 44 open, of course), and manipulate micro-springe c t o  produce a 
sequence of s ta t ic  drops of increasing length. 
the drop suddenly breaks off.  
the pressure i n  the contact circle cross-section j u s t  pr ior  t o  break-off 

I 

.. . .  
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should equal tha t  predicted by Eq. (29). 
the length fa2 of the drop ju s t  before break-off; then 

This may be tes ted by measuring 

Ya2 - fa2h . 
With xa the same as tha t  fo r  PmaX, numerical procedures, o r  Fig. 2, may be 
used t o  find the value of G = G2 such tha t  

ya2 w(xa;G2) - w(O;G2) ; 

then 

I f  wa2 = wae then the drop broke off a t  the theoret ical  minimum pressure; 
i n  general, experiment has shown tha t  wa2 < we. 

observable pendant drops. 
the smallest value of G a t  xa, wa is stable  t o  small disturbances; it is 
d i rec t ly  observable (with AP impressed upon the t i p  by connrmnication between 
b and e,  Fig. 3). 
next largest  G value; i t  i s  metastable, and must be produced by successive 
manipulation of c and A3 (with A2 and A4 open, and t i p  position fixed). 
observer notes tha t  i f  f < f , with A closed, then f -. fa, a f t e r  A3 is 
opened; on-the-other-had, i f T a  > f, $or .C3 closed, teen fa grows u n t i l  
the  drop breaks off. When fa = f, the drop length remains constant upon 
opening J3. This behavior is readily observed a f t e r  some practice;  a photo- 
graph of t h i s  stationary drop is obtained and used t o  compare i t s  shape with 
tha t  predicted by the appropriate G curve i n  Fig. 2. 

For fl such tha t  wal  c wa < wa2, fo r  a fixed x = xa, there are two 
The f i r s t  with fa  = feS, say, corresponding t o  

The second drop with fa  5 f,, say, corresponds t o  the 

The 

Drops corresponding t o  larger values of G than the above noted smallest 
pair ,  for the same (xa,wa), were not observed. 

EXPERIMENTAL RESULTS AND DROP BEHAVIOR 

Photographs of pendant drop p a i r s ,  fo r  a fixed x,, and wal < ws < w 
are shown i n  Fig. 4. I n  tha t  case the t i p  radius w a s  - 1 mn, using d i s t f l l e d  
water i n  air. Passing from Fig. 4a t o  4f corresponds t o  &P decreasing from 
s l igh t ly  less than e,,, t o  s l i gh t ly  greater than @Kin; the darker prof i le  
belongs t o  the stable g o p ;  the l i gh te r  prof i le  t o  t e metastable drop, as 
described i n  t h s  previous sectiEn. 
theory, with k = 2.64 ~lpn (or 0 = 68 dynes/cm), and x 
compared with the f i r s t  row of pendant drops, for  xaa= .34,  on Fig. 2. Pub- 
lished values of a = 72 dyneslan for water are considered correct  under room 
temperature conditions; never-the-less, t h i s  value of 68 dyneslcm should not 
be disturbing because no special precautions were taken t o  insure surface 
or  handling cleanliness; these experiments required internal  consistency, 
not accuracy with respect t o  some external standard. 

The shapes correspznd very closely t o  
= .38; they may be 

Production of max imum pressure drops requires some care. Even when t i p  
e is set such tha t  AP < APmax dripping can occur because, a f t e r  break-off of 
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the elongating drop the new interface may be such that  it forms an unstable 
drop which again grows and dr ips  off. 
loss through the stopcocks and tubing between reservoir b and t i p  e as the 
emerging drop develops. The greater the pressure loss  the less l ike ly  w i l l  
the  new interface form a drop which is "longer" than the metastable drop; i f  
the new interface is "longer" than the metastable drop it w i l l  grow and drip;  
i f  it i s  "shorter" it w i l l  contract t o  the stable configuration and become 
stationary. 
a f t e r  break-off, i s  observed. 
the contraction-after-break-off motion diminishes; for  hp = urnax contraction- 
after-break-off is not observable; the drop remains stationary,  with inter-  
mittant dripping due t o  small disturbances or, possibly, surface agimg 
effects .  

This dripping depends upon the pressure 

One can always adjust  the stopcocks so tha t  the contraction, 
As hp is increased (by moving t i p  e downward) 

. .  

d 'P 

.- 

e 

l 

I 

i 

E 
f 

! 

i 

Fig. 4. Pendant drop pairs,  showing the e f f e c t  of decreasing pressure i n  the 
contact circle plane on the shape of s table  (dark prof i le)  and 
metastable ( l ighter  profi1e)drops; d i s t i l l e d  water i n  air. 
c i r c l e  radius, 1.05 xn; xa = 0.38. 
of H20: 
The superposed gr id  spacing i n  (e) is 0.5 uun. 

Contact 
Contact circle pressure i n  mp 

(a) 13.0; (b) 12.4; (c) 11.2; (d) 7.0;  (e) 5.0; (f) 3.7. 
Temperature - 8OoF. 

i 
i 

i -  

i 

, 
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These Mma drops are shown i n  Fig. 5 as the dark profiles;  Table I 
srmmarizes the %ata for these drops. 

Table I. Experimental data on pendant drops (.lN, HCL-Hz, aqueous solution 
i n  a i r  a t  - 80°F), and r e su l t s  of data reduction using Fig. 2 and 
appropriate numerical solutions. 
and a drop photograph (Pig. 5) are experimental; a l l  other quan- 
t i t i e s  are inferred from the numerical r e su l t s  using these inputs. 

, 

Values of t i p  radius a, pmX 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1.05 
1.05 
2.03 
2.03 
4.04 

I 4.04 
5.87 
5.87 
7.46 
7.46 

10.9 .43 
.43 

4.82 .82 
.82 

1.37 1.55 
1.55 - 0 .  2.26 
2.26 
2.87 
2.87 

-4.22 4.55 
-1.10 3.15 
-1.91 2.70 - .57 2.70 - .53 1.50 

.20 2.25 - 0. .85 

.SO 1.90 

.29 1.00 

.62 1.75 

* Assumed values of the meniscus constant 
** 

Experimentally inferred minimum t i p  pressure 

Theoretically predicted minimum t i p  pressure 

2.5 
2.5 2.76 2.67 
2.5 
2.5 1.41 .62 
2.6 
2.6 - .51 -1.14 
2.6* 
2.6* -1.28 -1.71 
2.6, 
2.6* -2.38 -2.69 

Production of minimum pressure drops i s  r e l a t ive ly  simple. The alter- 
nate procedure described i n  the previous section was used t o  obtain the 
photographs i n  Fig. 5 (the l ighter  prof i les) ;  again, the data for  these drops 
are shown i n  Table I. 

In  Fig. 2 the tr iangular symbols correspond t o  the contact c i r c l e  
coordinates of the drops shown i n  Fig. 5. 
f a l l  close t o  the A l B l C l E l  envelope; however, the @,in points are a l l  sub- 
s t a n t i a l l y  below the A2B2C2E2 envelope, except fo r  the smallest drop a t  
x = .43;  i.e., Myin > emin e as given by Eq. ( 2 9 ) .  T h i s  seems reasonable 
sfnce the force ba ance on s m A l l e r  drops i s  dominated by surface tension 
forces; for  larger drops i n e r t i a  e f f ec t s  become important. 
t ha t  an experiment with be t t e r  vibration control could r e su l t  i n  closer 
agreement with the low pressure l i m i t .  

One sees tha t  the amax points 

It is believed 

Padday and P i t t  (8) exhibit  i n  t he i r  Fig. 33 some experimental and 
theoret ical  r e su l t s  for  cr i t ical  and separating volumes of volume-radius 
limited pendant drops; i.e., those drops whose static s t a b i l i t y  l i m i t s  are 
given by the present A2B2C2E2 envelope. 
Picknett (1970) "of pendant drops ju s t  before rupture" are noted with 
apparently excellent agreement of the experimental parameters of h i s  c r i t i c a l  
shapes with the theoret ical  r e su l t s  of Ref. 8. 

Unpublished photographs by R. 
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CONCLUSIONS AND RESULTS 

Assuming tha t  the meniscus constant k is known, the following con- 
clusions may be l i s ted .  

(a) Certain l imiting conditions for the production of pendant drops 

(b) 
can be seen from the envelopes bounding solution curves for  drop shapes. 

tact circle cross-section, with prescribed radius, fo r  existence of s t a t i c  
drops. 

(c) There exists a "low-pressure" envelope which, fo r  a prescribed 
contact circle radius, gives the minimum pressure for  s t a t i c  pendant drops. 

(d) An intermediate range of contact c i r c l e  pressures ex i s t ,  fo r  a 
given t i p  radius, such tha t  two observable pendant drops e x i s t ,  one s tab le ,  
the other metastable. 

(e) For a cer ta in  range of contact circle r a d i i  only negative contact 
circle pressures w i l l  produce s t a t i c  pendant drops. 

( f )  There ex i s t s  a maximum contact c i r c l e  radius for  existence of 
s ta t ic  pendant drops. 

(8) Experiments reported herein are i n  good agreement with the fore- 
going remarks. 

(h) Analytical solutions for  the drop shape, i n  the form of series 
representations, were obtained for  low and high pressure i n  the contact 

These solutions allow the envelopes fo r  high and low pressure t o  

A 'thigh-pressure" envelope gives the maximum pressure i n  the con- 

. c i r c l e  plane. 
( i )  

be analyt ical ly  determined; i n  par t icular ,  envelope properties i n  the 
l i m i t s  G - 0, and G -. 0 are exp l i c i t l y  displayed. 
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ON TIIE PRODUCTION OF BUBBLES BY FOCUSED LASER LIGHT 

W. Lauterborn and 8. Bolle 

The bubbles produced i n  l iquids when giant  pulses of a ruby laser  are focused 
into it are  studied by high speed photography with up t o  one million frames per 
second using a rotating mirror camera. I n  most of the experiments the l i g h t  
pulses are  focused i n t o  d i s t i l l e d  w a t e r  by a single lens w i t h  low f/number t o  
get  only one single spherical bubble or  a very limited number of bubbles. Bubble 
motion is evaluated from the frames with the aid of a d i g i t a l  computer using a 
graphic input device. Smoothed radius-time curves of d i f f e ren t  portions of the 
bubble wall are  obtained by a sophisticated treatment of the data also allowing 
a re l iab le  calculation of bubble wall veloci t ies  (except a t  the very instant  
of bubble collapse).  Bubble production by laser  l i g h t  shows t o  be a very 
flexible method t o  investigate bubble dynamics. It is applicable t o  a broad 
variety of experimental configurations. An extensive study has been done so f a r  
on bubble dynamics near boundaries and to a lesser  extent on bubble interaction 
and nonspherical bubbles. One of the numerical examples of the collapse of a 
spherical bubble near a plane sol id  boundary obtained by Plesset  and Chapman 
(J. Fluid Uech. 47 (1971) 283) could be realized experimentally. Good agreement 
is found. Moreover, bubble history can be followed f a r  beyond the val idi ty  of 
the theoretical  model. Besides the well-known microjet formation towards the 
wall two new j e t l i k e  phenomena are  observed which both may be given the name 
counterjet as  these jets are  directed away from the wall. Bubble interaction 
and the collapse of nonspherical bubbles usually lead t o  je t t ing  phenomena, 
too. A l m o s t  symmetric bubble division into two parts  with simultaneous j e t  
development i n  opposite directions has been observed on collapse of a bubble 
being flattened by a bigger bubble i n  its vicinity.  Presently the usefulness of 
holographic lenses to produce many-bubble configurations is investigated. 

INTRODUCTION 

Bubble dynamics is a basic problem i n  cavitation research, Its experimental 
investigation suffers  from a lack of sui table  bubble production methods. As a 
new approach to t h i s  problem, the bubbles formed when focussing giant  pulses of 
a ruby laser  i n t o  a l iquid were studied. The advantages of t h i s  bubble produc- 
t ion method are: 

1. The location and the instant  of production are precisely known. Thus, high- 
speed photography, the most powerful experimental method to  study bubble 
dynamics, applies ra ther  easily.  

2. There are  no disturbing objects - l ike  electrodes when using underwater 
sparks - influencing bubble motion. 

3. Spherical bubbles can be obtained. Thus a comparison with existing theory 
is possible. 

The first resu l t s  on bubble dynamics obtained by t h i s  new method look very 
promising. 
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APPARATUS 

A schematic diagram of the most essential  par ts  of the experimental setup is 
shown i n  Fig. 1. Giant pulses emitted by a Q-switched ruby laser  with a beam 

FLASH LAMP GROUND GLASS 
PLATE 

LENS n 

Fig. 1: Schematic diagram of t h e  setup 

cross section of about 1 cm, a duration of about 30 t o  50nsec and a total 
energy of about 0.1 t o  1 Joule are  focused i n t o  the l iquid under investigation 
by a single lens w i t h  a focal length of 1.28 cm i n  a i r .  The container used is a 
cube with an edge length of 10 cm. The bubbles produced i n  the vicini ty  of the 
focal point of the lens ( in  most cases submerged in to  the l iquid) are  diffusely 
illuminated by a f lash lamp through a ground glass plate  and photographed by a 
rotating mirror camera. Spherical bubbles then look black on a bright background 
with a bright central  spot where the l i g h t  passes the bubble undeflected. For 
the sake of clearness, the electronics needed for  timing the different  act ivi-  
t i e s  of the devices has been omitted i n  the diagram as  well a s  some auxiliary 
equipment l i k e  a He-Ne laser  used for  alignment of the optical  components and 
the photographic apparatus. 

RESULTS 

When a giant  pulse of the ruby laser  is focused into water, usually several 
points of breakdown occur, each being the center of a rapidly expanding bubble. 
The number of bubbles formed depends on the purity of the water, the l i g h t  
intensi ty  and the effective numerical aperture of the lens used. The number of 
bubbles is  decreased when the water i s  purified and Increases with increasing 
l i g h t  intensity and focal length of the lens used. The dependence on the purity 
of the water suggests t h a t  l i g h t  absorbing impurities i n  the water ac t  as nuclei 
for the bubble forming process. I n  the present investigation doubly d i s t i l l e d  
water with normal gas content ( f u l l  access t o  the a i r ,  no degassing) is used 
i n  most cases. The chance t o  get  only one single spherical bubble is then rather 
high. The dependence of the number of points of breakdown on the l i g h t  intensi ty  
and the focal length of the lens is qui te  c lear ,  as with increasing l i g h t  inten- 
s i t y  and focal length the l iquid volume where the l i g h t  intensity is suff ic ient  
to start a breakdown a t  an impurity becomes larger.  

It was observed t h a t  when the centers of breakdown are  very close t o  each 
other, the bubbles coalesce on growth and often form a spherical o r  almost 
spherical bubble. With a lens of "long" focal length (5  cm, say) and a t  a 
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suff ic ient ly  high l i g h t  intensi ty  (and t o t a l  energy) oblong bubbles may develop 
from the s t r ing  of points of breakdown ei ther  symmetric or unsymmetric.with 
respect to  the focal plane, but w i t h  a high degree of symmetry about the opti-  
ca l  axis. These observations can be said t o  be a d i r ec t  experimental proof of 
the s t a b i l i t y  of the spherical shape of a bubble during growth. When the cen- 
t e r s  of breakdown are  not very close t o  each other? a l l  kinds of distorted 
bubbles and l inear  bubble s t r ings  w i l l  occur. Up t o  now, the arrangement of 
these bubbles cannot be reproduced, but the pure observation of what may happen 
has led to new insights i n t o  bubble behavior upon interaction. Some examples 
w i l l  be given below. But our f i r s t  aim was t o  produce single spherical bubbles 
t o  compare the i r  motion with theoretical  models and predictions as  a f i r s t  s tep 
to more complicated bubble systems. 

I n  t h i s  paper we w i l l  mainly discuss the dynamics of a single spherical laser- 
produced bubble near a plane sol id  boundary. Besides t h e  well-known microjet 
formation towards the so l id  boundary two new j e t l i k e  (or spikelike, as  they 
seem t o  be on a smaller scale) phenomena were discovered. These j e t s  or  spikes 
a re  directed away fmm the w a l l  (or,  t o  be cautious, appear a t  the s ide of the 
bubble opposite t o  the wal l ) .  Therefore the name counterjet is suggested. A 
possible explanation for  the occurrence of these j e t s  is  given below. 

DYNAMICS OF A BUBBLE NEAR A PLANE SOLID BOUNDARY 

Phenomena observed 

A typical sequence of pictures of bubble growth, 
a t  75 OOO frames per second is shown i n  Fig. 2. The 
is t o  be seen dark i n  the lower pa r t  of each frame. 
because it extends f a r  out of the depth of f i e l d  of 

collapse and rebound taken 
sol id  boundary (brass plate)  
I t  is somewhat unsharp 
the photographic system. 

This is the main source of error  i n  the evaluation of distance-<me curves of 
the bubbles to evaluate the i r  dynamics (especially speeds of different  par ts  
of the bubble wall) .  With a computer-aided sophisticated smoothing procedure 
described below t h i s  d i f f icu l ty  could be overcome. The bubble of Fig. 2 was 
produced a t  a distance of b = 4.5 mm from the sol id  boundary and reached a 
maximum radius of & = 1.1 mm. Thus the r a t i o  b / b x ,  important for a nor- 
malization, becomes 4.17. This is a rather large value, nevertheless a pro- 
nounced j e t  is produced towards the boundary on collapse by involution of the 
top of the bubble. I t  should be pointed out tha t  the jet (of water) is  direct ly  
vis ible  as  a f ine  dark l ine  only i n  the bright central  spot of the bubble a f t e r  
the f i r s t  collapse. The conelike or funnel-shaped protrusion is  a secondary 
e f f ec t  produced by the j e t  through deformation of the lower bubble wall on 
impingement. The j e t  inside the protrusion is supposed t o  be much thinner ( l ike  
the f ine dark l ine  i n  the bright central  spot) .  Also it is believed tha t  t\e 
velocity of the t i p  of the protrusion is not the velocity of the j e t  which w i l l  
be higher. So w e  make a difference between a so-called " t i p  velocity" and a 
"true j e t  velocity". Up t o  now only the t i p  velocity could be measured (see 
below). 

On second collapse the bubble s t a r t s  as  a deformed (nonspherical) bubble of a 
d i s t i nc t  shape: f lattened a t  the top, elongated a t  the bottom and with a thin 
rod (or needle) of l iquid connecting top and bottom. This very special  confi- 
guration (but  always obtained by an i n i t i a l l y  spherical bubble near a plane 
sol id  boundary) usually collapses w i t h  a formation of a j e t  i n  the opposite 
direction of the f i r s t  j e t .  This j e t  is  j u s t  to  be seen i n  the l a s t  frame of 
Fig. 2, but its development can also be suggested by the f la t tening of the for- 
merly elongated bottom of the bubble. Sometimes (it is believed i n  very symmet- 
r i c  and undisturbed s i tuat ions)  no such j e t  is observed, presumably because the 
rod of l iquid of the f i r s t  j e t  prevents its development. The explanation of 
t h i s  second j e t  formation runs as follows. A region of higher curvature of a 
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bubble wall collapses always fas te r  than a pa r t  of a bubble wall w i t h  l ess  cur- 
vature. This statement has been deduced from experiments with nonspherical 
bubbles (1) and is  also supported by numerical calculations ( 2 ) .  The inward 
motion of such a fas te r  collapsing pa r t  of a bubble wall is not arrested when 
it involutes due t o  the iner t ia  of the liquid. Thus a j e t  is formed s t r iking 
the opposite wall and again causing a protrusion which indicates the j e t  (see 
also ( 3 ) ) .  

The preceding description of bubble dynamics near a plane sol id  boundary is  
valid i n  the majority of cases investigated. But  qui te  often a somewhat diffe- 
rent behavior of the bubble is observed as shown i n  Fig. 3. I n  Fig. 3 only 
pa r t  of the whole bubble motion is  shown near f i r s t  collapse. The framing ra te  
i n  t h i s  case is 300 Ong frames per second corresponding to  a time interval bet- 
ween frames of 13.3 psec. I n  the f i r s t  frame it can be seen tha t  the bubble is 
elongated with i ts  long axis perpendicular t o  the sol id  boundary. Then the 
bubble top f la t tens  and involutes, b u t  a f t e r  collapse a t iny j e t  (or spike) 
s t icks  out of the bubble i n  the opposite direction! The big j e t  towards the 
boundary develops on a much slower time scale. A possible explanation makes 
use of the above statement that  higher curved par ts  of a bubble wall collapse 
fas te r  than l e s s  curved par ts .  As a spherical bubble near a sol id  boundary 
becomes elongated perpendicular t o  the boundary, two areas of higher curvature 
develop which tend t o  collapse fas te r  than the r e s t  of the bubble (compare 
( 2 ) ) .  Obviously, there must be a competition between the higher curved lower 
pa r t  of the bubble tending t o  a higher collapse ra te  and the influence of the 
sol id  boundary tending to slow down the motion of the lower part of the bubble. 
It seems (because of the almost f l a t  appearance of the bubble near f ina l  col- 
lapse) tha t  the higher curvature takes over i n  the f ina l  stage of collapse 
and may thus be able t o  develop i ts  own j e t .  It i s  believed tha t  t h i s  j e t  can 
only appear when there is some dissymmetry present i n  the bubble motion so that  
the main j e t  downwards cannot swallow it or push it w i t h  it (because of i ts  
higher velocity and bigger dimensions). That t h i s  may be the case is indicated 
by the fac t  tha t  always, when such a "counterjet" is observed, the main j e t  is 
grossly distorted and does not develop very well. The counterjet s t icks  con- 
siderably f a r  out of the upper pa r t  of the bubble imedia te ly  a f t e r  collapse. 
This is not due to  its high velocity but because the bubble as  a whole is 
suddenly driven t o  the wall during collapse. The often porcupine-like appearance 
of a bubble immediately a f t e r  collapse (or on collapse) may be at t r ibuted t o  
the s t r iking of the two j e t s  (or opposite par ts  of the bubble wall) leading 
to a splashing of l iquid i n  a l l  directions but preferably downwards, the direc- 
t ion of the higher velocity j e t .  

These explanations of the observed behavior of i n i t i a l l y  spherical bubbles 
near a plane sol id  boundary seem probable but must be confirmed by more experi- 
ments, especially w i t h  higher framing rates  and higher resolution to confirm 
the mechanisms. The crucial  pa r t  is the f i n a l  stage of bubble collapse which 
is  not easi ly  accessible. 

Evaluation of the Frames 

r ies ,  the evaluation of bubble motion from the films became a problem. Also, as 
the boundary appears unsharp on the frames the data (distance of different  
points of bubble wall from the boundary) may sca t te r  considerably unless a very 
careful estimation of the grey scale the boundary exhibits is made. These 
problems were overcome with the aid of a computer and a graphic input device. 
The frames were projected onto the translucent plate  of the input device and 

. the coordinates (bubble wall and boundary) fed into the computer. These data 
(as indicated by the crosses i n  Fig. 4a) were intended t o  be low pass f i l t e r e d  

As a vast  number of films were taken of bubbles collapsing near sol id  bounda- 
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for  smoothing, but because of the steep collapse of the bubble some precautions 
must be taken as t o  not f i l t e r  out j u s t  this steep collapse. To get r i d  of the 
sharp edges i n  the distance-time curves ( j u s t  for  f i l t e r ing)  of the top and 
bottom curves of the bubbles (T and B i n  Fig. 4a) the sum (S = T + B) and dif-  
ference (D = T - B) curves a re  calculated (Fig. 4b), the pa r t  of the difference 
curve a f t e r  collapse is turned about (change of s ign) ,  and both sum and diffe- 
rence curves are  continued symmetrically t o  get periodic curves without jumps 
(denoted S' and De i n  Fig. 4c). These curves a re  then low pass f i l t e r e d  by 
Fourier transformation (FFT on the computer), weighting of the spectra (multi- 
p l icat ion w i t h  a special  function having low pass properties),  and back trans- 
formation (again a FFT on the computer). The curves obtained are denoted Sb 
and D& i n  Fig. 46. These curves are  then unscrambled t o  get the or iginal ,  but 
smoothed, distance-time curves of the bubble as shown i n  Fig. Sa. 

A s  from the smoothed curves i n  Fig. Sa derivates could be taken, the velo- 
c i t i e e  of different  points of the bubble w a l l  could be calculated. They are  
plotted i n  Pig. 5b for  three cases. Of course, the velocity-time cumes could 
not be followed through the collapse for  the top and bottom of the bubble as 
there is a very f a s t  change of speed and the framing ra te  is too slow t o  
follow the motion. The corresponding parts of the curves before and a f t e r  
collapse are  therefore connected only by a s t ra ight  dotted l ine.  

I n  Fig. 5 T again denotes t h e  top of the bubble and B the bottom ( a f t e r  
collapse it is the t i p  of the protrusion). C is the center of the bubble (taken 
from the central  bright spot of the bubble i n  the frames). The framing rate i n  
this case is 250 OOO frames per second and the r a t i o  of the distance of the 
bubble (center) and the m a x i m u m  radius 3.08. The t i m e  scale is a r b i t r a r i l y  set 
t o  zero 
is driven towards the boundary during the f ina l  stage of collapse and the 
f i r s t  stage of rebound with a maximum velocity of about 35 mfsec, attained 
apparently a t  the very point of  collapse (Fig. 5b). The bubble develops a j e t  
towards the boundary as can be seen i n  Fig. Sa from the asymmetry of the top 
and bottom curves a f t e r  collapse w i t h  respect t o  the center curve. The t i p  
velocity of the protrusion can be read from t h e  lower diagram i n  Fig. 5. A 
maximum velocity of about 120 m/sec was calculated. As mentioned before, the 
t r u e  j e t  velocity is supposed t o  be higher than this t i p  velocity by an amount 
not yet  known. But i n  any case the experiments show t h a t  even bubbles f a r  away 
from boundaries (in t h i s  case b/%53) may develop a strong j e t  (when un- 
disturbed). From these experiments it is concluded tha t  a spherical collapse 
of a cavitation bubble down to  the very point of collapse i s  highly unprobable 
i n  any real situation and that jet formation of a cavitation bubble on collapse 
is a normal process. 

Comparison w i t h  Theory 

Plesset and Chapman (4) have calculated the collapse of an empty, i n i t i a l i y  
spherical cavity i n  the neighborhood of a so l id  boundary for  two cases, i .e.  
b / h x  = 1 and 1.5. The case b / h  = 1.5 could be realized experimentally and 
thus compared with these calculations. A s  the instants  a t  which pictures are  
taken of the bubble do not coincide w i t h  the i n s t a n t s  of the calculated curves, 
an interpolation of the experimentally determined bubble shape is done t o  f i t  
the calculated curves. Additional d i f f i c u l t i e s  a r i se  from the fac t  tha t  even 
a t  the framing ra te  applied of 300 OOO frames per second the instant  of collapse 
cannot be determined precisely and also from the calculations it is not quite 
c lear  what instant  may be taken as  the f ina l  collapse. (There seems t o  be no 
simple answer t o  t h i s  question.) Thus a more or l ess  arbi t rary estimate of the 
instant  of collapse, where the experimental and theoretical  curves were f i t t e d  
i n  time, has been made and then the shape of the bubble was compared back i n  

a t  the beginning of the plot.  The center curve shows tha t  the bubble 



327 

time. The resul t  is shown i n  Fig. 6. The open circles  represent experimental 
data, the sol id  l ines  are  taken from the calculations of Plesset and Chapman 
( 4 ) .  The bubble has a maximum radius of R 
distance t o  the boundary of b = 3.9 mm, sgafhat b/Ga = 1.5. A t  the framing 
ra te  of 300 OOO frames per second not the t o t a l  history of bubble motion could 
be followed because of the limited frame number of 80 of the rotating mirror 
camera used. Also the i n i t i a l  shape of the bubble is not truely spherical. B u t  
nevertheless the behavior of the bubble (involution of the top and j e t  for- 
mation towards the boundary) f i t s  the theory almost quantitatively. 

= 2.6 mm and was produced a t  a 

BUBBLE INTERACTION 

A s  mentioned e a r l i e r ,  special precautions must be taken to  get  only one s in-  
gle spherical bubble. Usually a l inear  s t r ing  of bubbles is  produced. A l l  other 
parameters being the same, by variation of the laser  l i g h t  intensity (or total 
energy) it is possible to get only two bubbles along the optical  axis. Up t o  
now the mode structure and s t a b i l i t y  of the ruby laser  could not be sufficient-  
l y  controlled to get reproducible two-bubble configurations, but since films 
are easi ly  taken a wide variety of different  two-bubble configurations could be 
studied. It w a s  noted that  j e t  formation is predominant i n  bubble interaction. 
When the two bubbles are  produced f a r  away from one another and are  of almost 
equal size ,  both develop a j e t  towards the other bubble on collapse. When the 
two bubbles are  very close t o  each other they coalesce on growth to form a 
spherical or  almost spherical bubble. A t  an intermediate distance they f l a t t e n  
on growth on the facing sides and usually develop j e t s  towards each other. An 
example w i t h  a smaller and a bigger bubble is shown i n  Fig. 7, taken a t  75 OOO 
frames per second. The smaller bubble shows a peculiar shape on collapse as  
the hemispherical bubbles observed by Benjamin and E l l i s  ( 5 ) .  Qualitatively, 
t h i s  shape can again be understood by the f a c t  tha t  parts of a bubble with 
higher curvature collapse fas te r  than par ts  of less  curvature. A pronounced 
jet, c lear ly  vis ible  i n  the bright central  area of the bigger bubble, is formed 
by the smaller bubble. It penetrates the bigger bubble and s t icks  out a t  the 
opposite side. The collapse of the bigger bubble is  markedly influenced by the 
collapse of the smaller bubble, it collapses strongly nonspherically with one 
side flattened. 

bubble produced simultaneously a t  some distance (Fig. 8, 75 OOO frames per 
second). The small bubble is highly flattened attaining a shape very similar 
to an oblate spheroid l ike  the earth but w i t h  snmauhat different,curYa4xres 
a t  the north and south pole. It is believed tha t  t h i s  shape is a resu l t  of 
both the strong shock wave emitted on bubble fonnation(6) and the geometrical 
interaction of both bubbles. On collapse the small bubble divides i t s e l f  into 
two par ts  and develops two j e t s  through each of these par ts  i n  opposite direc- 
t ions through the north and south pole. One j e t  penetrates the big bubble 
and leads to a division of the big bubble on collapse in to  two pa r t s  (not shown 
i n  Fig. 8 ) .  This behavior of the small bubble can again be understood by the 
fac t  tha t  par ts  of higher curvature collapse fas te r  than those of l e s s  curva- 
ture. The curvature of the small bubble i n  the direction towards the north and 
south pole a t  the equator is  higher than a t  the poles. Thus the bubble con- 
s t r i c t s  more rapidly along the equawr and the inflowing water divides the 
bubble upon contact a t  its center. The water can be supposed to a t t a i n  a high 
velocity and is apparently squeezed out i n  the direction of the north and south 
pole simultaneously because of the symmetry of the configuration. So two 
bubbles each with a jet i n  the opposite direction to the other are  formed. 

man and Plesset  (2) up t o  near collapse. Qualitatively the calculations could 

A second very interesting example was obtained with one big and one very small 

The collapse of a bubble of similar shape as i n  Fig. 8 was calculated by Chap- 

I 
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be confirmed by t h i s  observation. Moreover, bubble history can be followed i n  
the experiment beyond the point of collapse giving a more complete picture of 
bubble dynamics i n  t h i s  case. 

ON TIIE PRODUCTION OF MANY-BUBBLE CONFIGURATIONS 

! 

Of most in te res t  i n  cavitation bubble dynamics is the investigation of whole 
cavitation bubble f ie lds  where many bubbles are  present a t  a t i m e  because t h i s  
is what happens i n  rea l i ty .  The multiple interactions may to ta l ly  a l t e r  the 
dynamics observed with a single bubble or w i t h  two bubbles. To s t a r t  some 
systematic experiments concerning these questions an extension of the method 
described is presently investigated. The idea is t o  use holographic lenses 
(i.e. lenses with multiple focal points i n  space) t o  get simultaneous breakdown 
i n  the l iquid (and thus bubbles) a t  different  points according t o  the lens used. 
The experimental setup w i l l  then remain simple as  before. 

Fortunately the question of the production of holographic lenses tha t  w i l l  
withstand the high l i g h t  in tens i t ies  needed has recently been studied and 
obviously been solved ( 7 ) .  I n  the technique described i n  (7) the holographic 
interference pattern is etched i n  chromium or quartz layers deposited on glass 
substrates.  It is not a simple technique as  it demands some very special  equip- 
ment and very careful and precise work. But the knowledge tha t  it w i l l  work 
w i l l  render it less  d i f f icu l t .  The f i r s t  s tep is t o  calculate the hologram, i.e. 
the interference pattern i n  some plane of the different  p o i n t s  i n  space ( l a t e r  
the focal points of the holographic lens) and a plane reference wave perpendi- 
cular to the plane. Upon illumination of the hologram with the plane reference 
wave, the points i n  space w i l l  be reproduced, and thus a l ens  w i t h  multiple 
focal points is obtained. Several d ig i ta l  holographic lenses have already been 
calculated on a computer, but not y e t  etched into quartz layers. An example is 
shown i n  Fig. 9, where a small portion of a calculated hologramm is shown i n  
almost the s ize  the e l ec t ros t a t i c  p lo t t e r  produces it on paper. To p lo t  the 
interference pattern only two grey scales (black and white) were used. This 
introduces higher diffraction orders, but also the efficiency of the f i r s t  dif-  
fraction order is enhanced. The real  drawback of having only two levels  i n  the 
p lo t  (or hologram) is  the appearance of additional points i n  space near the 
or iginal  ones due t o  what may be called "cubic difference diffract ion orders". 
This question has been studied by several authors the f i r s t  being Friesem and 
Zelenka (8). The hologram pa r t  of which is shown i n  Fig. 9 focuses a plane wave 
in to  27 p o i n t s  i n  four different  planes. The points a re  arranged i n  such a way 
as t o  form the l e t t e r  s t r ing  "HOLO" with each l e t t e r  i n  a different  plane i n  
space. Fig. 10 shows photographs of the point dis t r ibut ion i n  space obtained 
upon illumination of the hologram. The arrangement of the l e t t e r s  i n  different  
depths can easi ly  be noticed. 

We hope tha t  with this method it w i l l  be possible t o  produce many-bubble 
configurations with some degree of repeatabil i ty so tha t  t h e i r  dynamics can be 
investigated. 

FUTURE WORK 

As the f i r s t  resu l t s  look very promising the investigations w i l l  go on with 
special  emphasis on bubble interaction studies. As a s idel ine t o  these investi- 
gations a holographic apparatus is  developed t o  s tore  the bubble f ie lds  pro- 
duced i n  a hologram (9). Then be t t e r  conclusions on the bubble shapes and the i r  
re la t ive  location i n  space can be drawn. As up t o  now no sui table  holographic 
apparatus ex is t s  capable of taking holograms a t  high framing rates  (a  holo- 
graphic equivalent t o  the rotating mirror camera) f i r s t  steps towards the con- 
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st ruct ion of such a device a re  undertaken. 
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Fig. 4: Smoothing procedure applied t o  the distance-time curves of d i f fe ren t  
points of the bubble wall taken d i rec t ly  from the frames. 
a )  Top (T) and bottom (B) curves of the bubble. 
b) Sum (S = T + B) and difference curves (D = T - B). 
c) Turn about of pa r t  of the difference curve and symmetric 

continuation of both sum and difference curve. 
d) Smoothing of the curves by low pass f i l t e r ing  (Fourier trans- 

formation, weighting of the spectra,  back transformation). 
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Fig. 5: Bubble collapse near a so l id  boundary evaluated from a f i l m  
with a framing rate of 250 OOO frames per second. 
a)  Distance from the boundary for different  points of  

the bubble wall (T = top, C = center, B = bottom) 
versus t i m e .  

b) Velocity of  the three points versus t i m e .  
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F i g .  6: Comparison of experimentally determined bubble form (open circles) 
on collapse of a spherical bubble near a plane s o l i d  boundary with 
interpolated theoretical curves taken from Plesset and Chapman (4) 
( so l id  curves). Framing rate 300 OOO frames per second, maximum 
bubble radius R = 2.6 mm, distance o f  bubble from the so l id  
boundary b = 3 . p & ,  b/Rmx = 1 . 5 . .  
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1 '  

Fig. 7: Interaction of two bubbles produced at an intermediate distance. 
The framing rate is 75 OOO frames per second, the size of the 
individual frames is 5 mm x 6 mm. 

Fig. 8: Interaction of two bubbles, one being small compared to the other. 
The framing rate is 75 OOO frames per second, the size of the 
individual frames is 2.25 mm x 3.5 mm. 
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i 

Fig. 9: Portion of  a d ig i ta l  holographic lens (hologram) focusing a plane 
wave into 27 points in  space, reproduced a t  almost the original 
s i z e  of  the e lectrostat ic  plotter output. For application the p lot  
is reduced i n  s i z e .  One edge of th i s  p lo t  would then have a length 
of about 5 mm. 
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Fig. 10: Photographs of the focal point dis t r ibut ion of the holographic 
lens pa r t  of which is shown i n  Fig. 9. 
a)  - d) Small depth of f i e ld ,  the four d i f fe ren t  planes Of the 

letters are  approximately in  focus, 
e) large depth of f i e ld ,  viewpoint as i n  a) - d) 

resolution) , 
f )  another aspect (looking from the l e f t )  a t  large depth of f ie ld .  

(loss i n  
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SOME ASPECTS ON DYNAMICS OF NONSPHERICAL BUBBLES 

AND L I Q U I D  DROPS 

D.  Y .  Hsieh 
! Div i s ion  of Applied Mathematics, Brown U n i v e r s i t y ,  Providence, R . I .  

ABSTRACT 

The g e n e r a l  fo rmula t ion  o f  t h e  dynamical problem o f  non- 
s p h e r i c a l  bubbles  and l i q u i d  d rops ,  or t h e  problem of two idea l  
f l u i d s  separated by an i n t e r f a c e  is p r e s e n t e d  b o t h  i n  terms of 
E u l e r i a n  and Lagrangian c o o r d i n a t e s .  These fo rmula t ions  may a l s o  
be  expres sed  by a Hamiltonian v a r i a t i o n a l  p r i n c i p l e  which takes 
i n t o  account e x p l i c i t l y  the  s u r f a c e  energy of the  i n t e r f a c e  between 
t h e  two f l u i d s .  The g e n e r a l  fo rmula t ions  are a p p l i e d  s p e c i f i c a l l y  
t o  two c l a s s e s  of problems, 1.e. the n o n l i n e a r  o s c i l l a t i o n  of  
bubbles  i n  a n  o s c i l l a t i n g  p r e s s u r e  f i e l d  and the  coa le scence  o f  
two l i q u i d  d rops  o r  bubbles .  

I. INTRODUCTION 

I .- This  pape r  r e p o r t s  some o f  t h e  r e c e n t  p r o g r e s s  i n  t h e  s tudy  o f  
.the dynamics of n o n s p h e r i c a l  bubbles  and l i q u i d  d rops .  To dea l  
w i t h  some s p e c i f i c  problems i n  t h i s  c a t e g o r y ,  t h e  s t r a i g h t f o r w a r d  
way may be the  numerical  methods making e x t e n s i v e  u s e  o f  computers. 
For a n a l y t i c a l  approaches,  the  p e r t u r b a t i o n  expansion based small 
d e v i a t i o n  from s p h e r i c a l  symmetry o f  t he  s y s t e m  have u s u a l l y  been 
adopted i n  t h e  p a s t .  Recent ly ,  an approximate method based on t h e  
v a r i a t i o n a l  fo rmula t ion  seems t o  o f f e r  some promise f o r  t h e  s tudy  
of t h i s  c l a s s  of problems, and t h a t  i s  one a s p e c t  of t h e  problem 
we sha l l  r e p o r t  i n  t h i s  paper .  

Most of t h e  f l u i d  dynamical problems are more conven ien t ly  
treated i n  terms o f  E u l e r i a n  c o o r d i n a t e s .  It i s  a l s o  g e n e r a l l y  
t r u e  for most s t u d i e s  on bubbles  and l i q u i d  drops .  However, t h e r e  
are c e r t a i n  s i t u a t i o n s  i n  which the  E u l e r i a n  c o o r d i n a t e s  are n o t  
adequate .  I n  p a r t i c u l a r ,  t h e  d e t a i l s  of t h e  p r o c e s s  o f  break-up 
and coa le scence  are o f t e n  l o s t  I n  terms of the more convenient  
E u l e r i a n  c o o r d i n a t e s .  The re fo re  a pa ra l l e l  development i n  terms 
of  Lagrangian c o o r d i n a t e s  i s  very h e l p f u l  and sometimes even 
e s s e n t i a l .  The similari t ies and d i f f e r e n c e s  of  t h e  s o l u t i o n s  i n  
terms of  E u l e r i a n  and Lagrangian c o o r d i n a t e s ,  could fu r the rmore  
o f f e r  some i n s i g h t  f o r  f u r t h e r  p r o g r e s s e s .  

Thus, i n  t h e  fo l lowing  w e  s h a l l  f i r s t  p r e s e n t  t h e  E u l e r i a n  and 
Lagrangian fo rmula t ions  of t he  problem as w e l l  as the  corresponding 
v a r i a t i o n a l  p r i n c i p l e s .  Then w e  s h a l l  u se  t he  Lagrangian formula- 
t i o n  t o  s o l v e  t h e  l i n e a r  s t a b i l i t y  problem o f  a s p h e r i c a l  bubble .  
Using t h i s  s o l u t i o n  as a gu ide ,  we s h a l l  i n d i c a t e  how an approximate 
v a r i a t i o n a l  method can be  developed t o  s o l v e  t h e  problem of 
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n o n l i n e a r  n o n s p h e r i c a l  motion of t he  bubble.  Next w e  s h a l l  a l s o  
use t h e  Lagrangian fo rmula t ion  t o  t rea t  the  problem of t he  
coalescence of  two l i q u i d  d rops ,  one l a r g e  and one small. The 
approaches employed t o  d e a l  w i t h  t h e  bubble problem can of  course 
be adapted t o  deal wi th  t h e  problem of  t h e  l i q u i d  drops and v i c e  
v e r s a .  

Another c l a s s  of t h e  problem i s  t h e  o s c i l l a t i o n  of  bubbles  
and l i q u i d  drops i n  an e x t e r n a l l y  imposed o s c i l l a t i n g  p r e s s u r e  
f i e l d .  Here we p r e s e n t  some o f  t h e  r e c e n t  r e s u l t s  on the  n o n l i n e a r  
o s c i l l a t i o n  of a s p h e r i c a l  bubble i n  an e x t e r n a l  s i n u s o i d a l  
p r e s s u r e  f i e l d  u s i n g  t h e  newly developed v a r i a t i o n a l  method. 
U l t i m a t e l y ,  t h e  v a r i a t i o n a l  method w i l l  be a p p l i e d  a l s o  t o  t h e  
problem o f  n o n l i n e a r  o s c i l l a t i o n  of n o n s p h e r i c a l  bubbles .  The 
p r e s e n t  s tudy  can be cons ide red  as a p re l imina ry  s t e p  towards 
t ha t  g o a l .  

11. E u l e r i a n  and Lagrangian Formulation and the  V a r i a t i o n a l  
P r i n c i p l e .  

Let F ( ~ ~ ~ x * , x ~ , t )  = 0 (1) 

be a s u r f a c e  t h a t  d iv ides  t h e  whole space i n t o  two r e g i o n s  G and 
G’ each occupied by an i d e a l ,  compressible  f l  . Then the  
governing e q u a t i o n s  i n  E u l e r i a n  form i n  G are rl? : 

and 

where p i s  t h e  d e n s i t y ;  s ,  t h e  en t ropy ;  p ,  t h e  p r e s s u r e  and vi the 
i t h  c o n t r a v a r i a n t  component of  t h e  v e l o c i t y  of t h e  f l u i d  i n  G ;  and 
t h e  g e n e r a l  t e n s o r  n o t a t i o n  has  been adopted h e r e .  
t he  i n t e r n a l  energy f u n c t i o n  U ( p , s ) ,  t h e n  we a l s o  have the fol low- 
i n g  thermodynamic r e l a t i o n s :  

I f  we i n t r o d u c e  

and 

- IT au 
as 

where T i s  the  t empera tu re .  

( 5 )  

! 

, 
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I 

I 

1 

An i d e n t i c a l  s e t  of  equa t ions  i n  primed v a r i a b l e s  can be 

1 2 3  On the i n t e r f a c e  F(x  ,x ,x , t )  = 0 ,  t h e  k inemat ic  and 

s i m i l a r l y  w r i t t e n  down f o r  the  f l u i d  i n  t h e  

dynamic i n t e r f a c i a l  c o n d i t i o n s  are as f o l l o w s :  

r e g i o n  G'. 

+ v"F = 0 , 
t ,i 

and 
P-P' = a(- 1 + 7) 1 , 

rl 2 

where u i s  t h e  c o e f f i c i e n t  of  s u r f a c e  t e n s i o n ,  and r1 and r2 are 
t h e  two p r i n c i p a l  r a d i i  o f  c u r v a t u r e  a t  the  p o i n t  o f  i n t e r e s t  on 
F=O. They are t aken  t o  b e  p o s i t i v e  i f  t he  c e n t e r s  of c u r v a t u r e  
l i e  on t h e  side o f  G,  and n e g a t i v e  If o the rwise .  

To e x p r e s s  t h e  same problem i n  Lagrangian form, w e  i n t r o d u c e  

Thus the  p r e s e n t  coord ina te s  o f  t h e  p a r t i c l e ,  
(X 1 2 3  ,X ,X ) as the g e n e r a l i z e d  c o o r d i n a t e s  of  a f l u i d  p a r t i c l e  a t  
t h e  i n i t i a l  moment. 
(x1,x2,x3) are g iven  by  

(10) 1 1 2 3  
Xi = X ( x  ,x ,x ,TI. 

while  t h e  i n v e r s e  r e l a t i o n  i s  

xi = Xi(X1,X2,X3,t) , (11) 

and t f T .  

Then t h e  equa t ions  of conse rva t ion  of mass, en t ropy  and 
momentum are g iven  r e s p e c t i v e l y  by : 

1 2 3  P ( X  .x .x ,O) 
1 2 3  P ( X  ,x ,x ,T) 

= 8 ,  

where .I ,- 

(12) 
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and ( ) denotes  t h e  material d e r i v a t i v e  wi th  r e s p e c t  t o  time and 
( ) ;J denotes  t h e  t o t a l  c o v a r i a n t  d e r i v a t i v e .  2 )  

The k inemat ic  i n t e r f a c i a l  cond i t ion  i s  expressed  simply by 
t he  equa t ion  of i n i t i a l  i n t e r f a c e :  

while t h e  dynamical i n t e r f a c i a l  cond i t ion  i s  

where H i s  the  mean c u r v a t u r e  of  t h e  p e n t  i n t e r f a c e  and can be 
expressed  i n  terms of s u r f a c e  t e n s o r s .  r 3  

The above E u l e r i a n  fo rmula t ion  as g iven  by ( 2 ) - ( 9 )  can be 

s h o d 3 )  t o  be  e q u i v a l e n t  t o  t h e  fo l lowing  v a r i a t i o n a l  problem: 
t h e  f low f i e l d  of t he  system and t h e  motion of t h e  i n t e r f a c e  are 
such t h a t  t he  f u n c t i o n a l  

t 2  t 2  
J = [ d t  I dV[T 1 2  pv -pU] - [ d t  [ adA , 

t. v 
(18) 

i s  an extremum, s u b j e c t  t o  t h e  c o n s t r a i n t  c o n d i t i o n s  ( 2 1 ,  ( 3 1 ,  
and 

where a can be i n t e r p r e t e d  as one of  the  Lagrangian coord ina te s  of 
t he  f l u i d  p a r t i c l e s ,  A deno tes  t h e  i n t e r f a c e  and V = V G t V G ,  i s  
volume of bo th  r e g i o n s  G and G I .  

of  uniform s t a t e ,  i t  i s  
To deal wi th  r e g i o n s  t h a t  con ta in  incompress ib le  f l u i d s  o r  

f en more convenient  t o  use ano the r  
f u n c t i o n a l  f o r  v a r i a t i o n  P S  3 : 

I A 

where the  p r e s s u r e  p i s  cons idered  as a f u n c t i o n  of the en tha lpy  H 
and en t ropy  s g iven  by the  u s u a l  thermodynamic r e l a t i o n  

dp pdH - pTdS, (21)  

wi th  H e x p l i c i t l y  p r e s c r i b e d  as 
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where x is a v a r i a b l e  con juga te  t o  a ,  while t h e  f l u i d  p a r t i c l e  
v e l o c i t y  is i n t e r p r e t e d  as: I 

The Lagrangian f o r  a t i o n  as g iven  by (12)-(17) ,  on the  o t h e r  
hand, can be  shownlpyj as e q u i v a l e n t  t o  the  fo l lowing  v a r i a t i o n a l  
p r i n c i p l e :  t he  flow f i e l d  of the  system and t h e  i n t e r f a c i a l  
c o n d i t i o n s  are such tha t  t h e  f u n c t i o n a l  

t, c 
I = / d'l / dX 1 2 3  dX d X  [det g,]1/2[$ Pogl jX * i Y -  X P o U l  

- I' d'l 0 a1l2du1du2 , 
t, A 

I I 

, i s  an extremum s u b j e c t  t o  t h e  c o n d i t i o n s  (12 )  and (131, where 
(u ,u ) are t h e  s u r f a c e  c o o r d i n a t e s  f o r  t h e  i n t e r f a c e ,  and a is 1 2  

a s u r f a c e  t e n s o r .  ( 2 )  

111. The Motion of a Nonspherical  Bubble. 

o f t e n  s t a r t  w i t h  t he  s tudy  0.f t he  s t a b i l i t y  o f  t h e  s p h e r i c a l  
motion of  t h e  sys tem.  For  l i n e a r  s t a b i l i t y  a n a l y s i s ,  w e  u s u a l l y  
p e r t u r b  t h e  i n t e r f a c e  from s p h e r i c i t y  s l i g h t l y .  Mathematically, 
If t h e  o r i g i n a l  E u l e r l a n  sphe r i ca l  I n t e r f a c e  I s  given b y :  

Fo r  the  s tudy  of  t he  n o n s p h e r i c a l  motion of a sys tem,  w e  

r = R ( t )  , 
now w e  u s u a l l y  take the  i n t e r f a c e  as g iven  by: 

where Y;'s are s p h e r i c a l  harmonics and a;(t)ls are assumed t o  be 
small. 

For  bubbles  i n  an incompress ib l e ,  i n v i s c i d ,  thermal ly  non- 
conduct ing f l u i d ,  t he  s t a b i l i t y  problem has been i n v e s t i g a t e d  
f a i r l y  e x t e n s i v e l y  he  l i n e a r  s t a b i l i t y  of expanding and 
c o l l a p s i n g  b u b b l e ~ ( ~ ) T 5 )  as wel l  as bubbles  i n  o ~ c i l l a t i o n ( ~ ) ( ~ )  
have a l l  been s t u d i e d  i n  some de ta i l .  For  c o l l a p s i n g  bubbles  
n o n l i n e a r  s t a b i l i t y  problem has a l so  been t reated numer i ca l ly (8  jhe 
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as well  as by approximate a n a l y t i c a l  methods. (9)(10) 
e f f e c t  of  c o m p r e s s i b i l i t y  and heat and mass t r a  sf r i s  inc luded ,  
the  s t a b i l i t y  e q u a t i o n s  have a l s o  been d e r i v e d .  On t h e  o t h e r  
hand, d e v i a t i o n s  from s p h e r  c a  s ape of  a drop of i ncompress ib l e  
f l u i d  l e a d  t o  s u r f a c e  w a v e s t l l f ( 3 7  o r  even break-up of t he  drop. 

I n  t h i s  s e c t i o n ,  w e  shal l  be mainly concerned w i t h  the  non- 
s p h e r i c a l  motion of a bubble i n  an incompress ib l e  f l u i d  based on 
the  Lagrangian fo rmula t ion .  Let us  adopt t h e  s p h e r i c a l  p o l a r  
c o o r d i n a t e  systems f o r  bo th  t h e  p r e s e n t  and i n i t i a l  c o o r d i n a t e s .  
Thus the  system (r,e,dJ) w i l l  b'e i d e n t i f i e d  w i t h  p r e s e n t  g e n e r a l  
c o o r d i n a t e s  (x1,x2,x3), wh i l e  (R,O,Q),  w i t h  (X ,X ,X 1. 
these i d e n t i f i c a t i o n s ,  i f  w e  c o n s i d e r  t he  s p h e r i c a l  motion, 1 .e .  

When t h e  

1 2 3  With 

r = r ( R , T ) ,  
e = e ,  
4 = Q ,  

and take the  f l u i d  i n  t h e  r e g i o n  G as i ncompress ib l e ,  w e  o b t a i n  
from e q u a t i o n  (12)-(17) i n  s e c t i o n  11 : (2 )  

r3 = R 3 3  t D  (t)-Do 3 , (26)  

and 

(27)  

where p i s  t h e  p r e s s u r e  I n  t h e  l i q u i d  a t  i n f i n i t y .  The e q u a t i o n  
of  bubbye s u r f a c e  i s  

R = Do , o r  r = D(T) . (28)  

To t r ea t  n o n s p h e r i c a l  motion, l e t  us  w r i t e  

( 2 9 )  

r = F(R,T) t fCR,B,@,-r) , 
e = 0 t gCR,B,Q,.r) , 

p = P,(R,T) + P,(R,o,@,T) , 
dJ = Q + hCR,Q,@,T) 3 

where 
F3 5 R 3 3 3  tD -Do , C30) 

and p0(R,.c) i s  t h e  s o l u t i o n  f o r  p r e s s u r e  i n  t h e  s p h e r i c a l l y  
symmetric case. 
s p h e r i c a l  harmonics,  e.g. 

L e t  us expand f and o t h e r  f u n c t i o n s  i n  terms of  
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I 

Now l e t  

Then, it can be shown t h a t  when t h e  p e r t u r b a t i o n s  from s p h e r i c a l  
motion,  f ,g ,h ,p l ,  are small, we can o b t a i n  t h e  fo l lowing  l i n e a r  
s t a b i l i t y  equa t ion :  (2) 

3D - [OD - ( a - l ) ( l l + l ) ( t + 2 )  3’ 0 a t m  = 0 . ( 3 3 )  %m + D agrn - D 

It may be  noted  that  when a i s  small, t he  bubble  s u r f a c e  i s  
g iven  i n  terms of  E u l e r i a n  &ord ina te s  by: 

and t h e  equa t ion  ( 3 3 )  i s  the same as tha t  
E u l e r i a n  fo rmula t ion .  When a i s  n o t  
times one wants t o  e x t r a p o l a t e  ti@ l i n e a r  

d e r i v e d  from the  
very  small, as some- 
s o l u t i o n  t o  the  non- 

l i n e a r  r e g i o n ,  t he  r e s u l t s  ob ta ined  here w i l l  d i f f e r  from t h e  
cor responding  e x t r a p o l a t i o n .  

To t r e a t  t he  n o n l i n e a r  problem, t he  v a r i a t i o n a l  method is 
o f t e n  u s e f u l  when exper ience  o r  o t h e r  i n fo rma t ion  could sugges t  
good t r i a l  f u n c t i o n s .  Thus when s p h e r i c a l  harmonics of  h igher  
degrees are expec ted  t o  be  n o t  as impor t an t ,  we could  take t h e  
added terms i n  ( 2 9 ) ,  1.e. f , g , h  and p l , t o  c o n t a i n  only  s p h e r i c a l  
harmonics of  degree 2.  

a x i a l l y  symmetric c o l l a p s e  o f  a bubble  w i t h  un i form i n t e r n a l  
p r e s s u r e  i n  an incompress ib l e  f l u i d  as an example, and i n d i c a t e  
how we  approach t h i s  problem. For  s i m p l i c i t y ,  w e  shal l  n e g l e c t  
the s u r f a c e  t e n s i o n .  Even w i t h  the a n g u l a r  dependence e x p l i c i t l y  
g iven  by the s p h e r i c a l  harmonics of degree 2 ,  t h e  f u n c t i o n s  
f , g ,  and p are f u n c t i o n s  o f  bo th  R and T . This  i s  n o t  desirable,  
s i n c e  t h e  J e s u l t i n g  E u l e r  equa t ions  would b e  coupled n o n l i n e a r  
par t ia l  d i f f e r e n t i a l  e q u a t i o n s .  Using the  s o l u t i o n  of  t h e  l i n e a r  
s t a b i l i t y  problem as a gu ide ,  l e t  us  take t h e  t r i a l  s o l u t i o n  as: 

Based on t h i s  assumption,  l e t  us  t rea t  the problem of the 
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For lnconpressible fluid, the internal cnewy term (-poU) in the 
expression (24) should be replaced by p Thus the volume 

this problem with axial symmetry, as given by (151, we have 
integral will yield /pdV in the present vo g. ume of the fluid. For 

$= r2 sin e 
R~ sin o 

(rRBO-reeR) . (38) 

It i s  evident the term sin 0 will cause difficulty in evaluating 
the integral (24) with respect to the variable 0 and R. It 
may be reasonable approximation for the purpose here to replace 
sin 8 by sin 0 in (38), then In the intepral (241, the 
integration with respect to R and 0 in (24) 
form : 

I = 1' d'l L(D(r) ,b('l) , D ( T )  ,i2(~) ,i2('l) ,a2(~) ;P,,P' ,Do> . (39) 

The variation of I with respect to D and a2 will then lead to two 
ccupled nonlinear ordinary equations. The comparison of the solu- 
tion of this approximate sche e ith the corresponding solution 
from the Eulerian formulation 'Ploy should be interesting. 

can be put in the 

tl 

I 

! 
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IV. The Coalescence of Two S p h e r i c a l  Drops 

p l a y s  an impor tan t  r o l e  i n  the growth o f  r a i n d r o p s  e s p e c i a l l y  i n  
w a r m  c louds .  (12) 
has been c a r r i e d  out  f o r  the  s tudy  of  coa lescence  e f f i c i e n c y ,  i . e .  
the f r a c t i o n  o f  t he  p rocesses  t ha t  lead t o  coa lescence  a f t e r  two 
r a i n d r o p s  c o l l i d e  wi th  each  o t h e r .  (13) Due t o  d i f f i c u l t y  o f  t h e  
a n a l y s i s  and the g e n e r a l  s ta te  of art i n  t h e  s tudy  o f  the  complete 
r a i n f a l l  problem, i t  i s  unde r s t andab le  that  there has n o t  been 
much i n v e s t i g a t i o n  of  the  detailed hydrodynamics o f  the coa le scence  
p r o c e s s .  However, i t  i s  c e r t a i n l y  f a s c i n a t i n g  i f  w e  can f o l l o w  
t h e  coa le scence  p rocess  i n  time e s p e c i a l l y  i n  t h e  v i c i n i t y  of  the 
p o i n t  of coa le scence ,  and see how the  coa le sced  drop o s c i l l a t e s  
o r  how the  d rops  s e p a r a t e  a g a i n  af ter  c o l l i s i o n .  

To approach t h i s  problem, we sha l l  l i m i t  our  s tudy  t o  the  
coa lescence  of one l a r g e  drop and one small drop .  The i n i t i a l  
c o n f i g u r a t i o n  i s  t aken  t o  be two drops  wi th  rad i i  D and d 
r e s p e c t i v e l y  j u s t  i n  touch  w i t h  each  o t h e r .  ( P i g .  1) L e t  us  
assume d << D, and take the  l a r g e r  drop  s t a t i o n a r y  i n i t i a l l y  whi le  
the  smaller drop  as a whole has  some i n i t i a l  v e l o c i t y  n o t  
n e c e s s a r i l y  pe rpend icu la r  t o  t h e  t a n g e n t  p l a n e  of t h e  d rops  a t  
t h e  c o n t a c t  p o i n t .  

d rops  does no t  d e v i a t e  much from t h e  s p h e r i c a l  shape r = D, o r  
r = Ro, where 

It has been wel l  es tabl ished t h a t  t h e  coa lescence  p r o c e s s  

Ex tens ive  t h e o r e t i c a l  and expe r imen ta l  r e s e a r c h  

S ince  d << D, i t  can be argued t h a t  t he  f ree  s u r f a c e  of  t he  

(40) 3 3 113 Ro = CD +d 1 , 

i s  t h e  radius  o f  the  coa le sced  drop if it  i s  s p h e r i c a l .  Thus, 
the l inear  t h e o r y  o f  t h e  s t a b i l i t y  of t h e  sphe r i ca l  motion may 
be adequate  f o r  t h i s  s tudy .  

n o t  a p p r o p r i a t e  f o r  t h i s  problem. Because the  i n i t i a l  f ree  
s u r f a c e  can n o t  be d e s c r i b e d  by the  form l i k e :  

It i s  c l e a r  from the  o u t s e t  t h a t  the  E u l e r i a n  fo rmula t ion  i s  

which i m p l i e s  that  r i s  a s ingle-va lued  f u n c t i o n  of 8 and 4 . To 
achieve  t h e  s ing le -va lueness  o f  t h e  f ree  s u r f a c e ,  t he  small drop 
could be r e p l a c e d  a r t i f i c a l l y  by  a small cap w i t h  Same volume 
and f ree  s u r f a c e  area as t h o s e  of t h e  o r i g i n a l  small drop .  But 
t h e n  the  i n i t i a l  c o n t a c t  would be  a s u r f a c e  c o n t a c t  w i th  f i n i t e  
area rather  t h a n  the  p o i n t  c o n t a c t ,  and the  de ta i led  dynamical 
p r o c e s s  at  the  c o n t a c t  p o i n t  would n o t  be r e v e a l e d .  

.. . .” . 
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Therefore we should try to approach this problem by use of 
the Lagrangian coordinates. We shall formulate the problem as 
if the motion of the system is some deviation from a single 
spherical drop of radius R . Let us define a fictitious Initial 
state or reference state at some T = T~ < 0 for which the drops 
are described by 

r = R ,  
e = @ ,  
+ = a ,  

with the free surface given by 

r = R o .  

The general state of the system are given by 

r = R+f(R,O,@,T) , 
e = O+g(R,O,O,r) , 
Cp = @+h(R,O,@,T) . 

In particular, the real initial state at ‘I = 0 as shown in 
figure 1 is given by 

r(R,O,O,O) = R+f(R,O,@,O) , 
+(R,O,@,O) = O+g(R,O,@,O) , 
+(..R,O,@,O) = @+h(R,O,@,O) . 

(43) 

C44) 

The fictitious initial state can be chosen in many ways. Or in 
other words, the functions f(R,O,@,O), g(R,O,@,O) and h(R,O,@,O) 
can be chosen in many ways. The only requirements is that the 
states at T = T and T = 0 are kinematically connected, since we 
are dealing witA drops of incompressible inviscid fluids. For 
compressible or viscous fluids, the situation will not be so 
simple. 

One such solution is given by 

r(R,O,@,O) = RH(D,-R)+H(R-D,)[H(Oo(R)-Q)R1+H(~-Oo(R))R~~ , (45) 
cOs[B(R,O,@,O)] = COS OH(D,-R)+H(R-D${H(Oo(R)-O)(D+d+R3)/R1 

+ H( O-Oo(R)) [R2cos 0+2(R-D1) 2 /D1(2R-D1) I ,  

(46) 

( 4 7 )  

i 

t 

i 

I 
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where 

R3 = [R'COS Q-D1(2R-D$]/(R-D1), 
2 

cos Q O ( R )  = 1-2(1 - Dl , 
1 

and H i s  the  Heavis ide  f u n c t i o n  such t h a t  H ( x )  = , f o r  
x $ 0. 0 

The correspondence between t h e  c o n f i g u r a t i o n s  o f  t he  s t a t e  
T=T and T=O i s  shown i n  F igu res  1 and 2 .  The same coord ina te s  
d e s h r i b e  t h e  f l u i d  i n s i d e  t h e  sphere  R < D1. For f l u i d s  i n  t h e  
s p h e r i c a l  s h e l l  D 
occupy t h e  small kphere i n  F ig .  1, and t h e  s u r f a c e  0 = Oo(R)  
degene ra t e s  i n t o  a s i n g u l a r  l i n e ;  whi le  t h o s e  f l u i d s  wi th  
w i l l  s p r e a d  out  t o  f i l l  t h e  e n t i r e  s p h e r i c a l  s h e l l  D1 < R < D 
I n  t h e  l a r g e  sphe re  of F ig .  1. When d << D, t h e  s t a t e  d e s c r i b e d  
by ,C45)-c47) can b e  pu t  i n  t he  form (44) w i t h  f , g ,h  cons ide red  as 
small q u a n t i t i e s .  

It i s  e a s i l y  v e r i f i e d  t h a t  t h e  s t a t e  a t  ?=ti as d e s c r i b e d  

< R < Ro i n  F ig .  2,  t h o s e  w i t h  0 < Oo(R)  w i l l  

O> O o ( R )  

by (2) and ( 3 )  s a t i s f y  t h e  equa t ions  (12)-(17) i n  s e c t i o n  11. 
Moreover t h e  p r e s s u r e  i n s i d e  t h e  l i q u i d  drop i s  c o n s t a n t :  

"0 

i f  o u t s i d e  t he  l i q u i d  drop i s  assumed t o  be free space  wi th  z e r o  
p r e s s u r e .  

Now l e t  u s  s u b s t i t u t e  ( 4 3 )  i n t o  ( 1 4 )  and (l5), w r i t e  

and keep only terms l i n e a r  i n  f , g ,h  and p l .  We o b t a i n  

2 2  i R s i n  OhTT = - - ( p l ) @  P s 

and 

- 2 f  + f R  + - 1  - ( g  s i n  0 I Q  = 0 . R s i n  8 
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From equations (51) and (531, we obtain 

(54) 2 2f 1 1  
R (F + fRlTT - p [sin @ ( P ~ ) ~ I ~  = 0 

Let us now express f and p1 in terms of spherical harmonics, thus 

R 

R 
f(R,O,Q,T) = CfRm(R,T)Ym(Q,@) , 

P~(R,@,@,T) = CpRm(R,~)Ym(@,Q) . (55) 

Then the equation (54) becomes 
[2RfRm R2(ftm)~ITT + p 1 R(R+l)pllm = 0 9 (56) 

while (50) becomes 

(fRrnITT - - - - 1 (57) 
p (PRm)R * 

Equations (56) and (57) lead to 

R ~ ( P ~ ~ ) ~ ~  + ~R(PR,)R - Il(R+l)pRm = 0 (58) 

Thus 

(59) R R+ 1 pRm(R,') = Aam(T)R + BRm(T)/R 

is finite at R=O, and we obtain As PRm 

PRm (R,T) = ARm(~)R R . (60) 

For this linear theory, the boundary condition ( 1 7 )  leads to 

. _  . . -  . - . 

(61) 

(62) 

... r -- 

I 

I 
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Now the equation (57)  becomes 

= [ua(ll+2)(a-l), 1/2 , 
WR PR2 

Let us denote (64)  

then the integration of (63)  yields 

Then after setting R=Ro the equation (65)  leads to 

uRm(?) = -uR (r-t)uRm(t)dt + aim + BRmf . 
2 /  0 

The last eqqation can be solved to obtain 

(T) = aRm cos war + - sin uRT . %rn *I1 

(67) 

(68) 

This we obtain from (65) : 

from (45) and the initial impact velocity. 
completely determined. The solution (69)  is o f  course the general 

Therefore f l lm(R, . r )  is 
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s o l u t i o n  of t h e  problem of t h e  l i n e a r  s t a b i l i t y  of  a s p h e r i c a l  
drop i n  Lagrangian form. The f i r s t  t e r m ’ r e p r e s e n t s  the  
o s c i l l a t o r y  par t  of  the  motion w i t h  frequency uR, and i n  the  
l i n e a r  r ange ,  t he  l a s t  two terms w i l l  make no c o n t r i b u t i o n  t o  
s u r f a c e  motion. Thus s t r i c t l y  speaking,  t h e  l i n e a r  t h e o r y  
p r e s e n t e d  here can on ly  app ly  t o  t he  coalescence of drops by 
normal impact .  That fRm does no t  depend on the  s o l u t i o n s  and 
the  i n i t i a l  c o n d i t i o n  o f  g and h i s  a l s o  an i n d i c a t i o n  t o  t h i s  
e f f e c t .  To account  f o r  the  ob l ique  impact w e  need e i t h e r  a 
second o r d e r  development beyond t h i s  l i n e a r  a n a l y s i s  o r  a 
j u d i c i o u s  e x t r a p o l a t i o n  of  t h e  l i n e a r  r e s u l t s .  With the  r e s u l t s  
of  t he  l i n e a r  t h e o r y  a v a i l a b l e  here, it i s  no t  very d i f f i c u l t  t o  
develop the  second o r d e r  t h e o r y .  However, many i n t e r e s t i n g  
f e a t u r e s  of t h e  coa le scence  p rocess  i n  t h e  v i c i n i t y  of  c o n t a c t  
p o i n t  could a l r e a d y  be r e v e a l e d  from t h e  s tudy of  the  coa le scence  
by the  normal impact.  

V. -Nonlinear O s c i l l a t i o n  of Bubbles 

o s c i l l a t i o n  of‘ bubbles .making use  of t h e  v a r i a t i o n a l  methods. The 

( f f i h j  . Let  
detai ls  o f  t h e  v a r i a t i o n a l  methods as w e l l  as t h e  
t i o n  t o  bubble o s c i l l a t i o n  i s  p r e s e n t e d  elsewhere 
u s  c o n s i d e r  t he  a d i a b a t i c  o s c i l l a t i o n  of  a s p h e r i c a l  gas bubble  
i n  an incompress ib l e  f l u i d  under a n  e x t e r n a l l y  a p p l i e d  s i n u s o i d a l  
p r e s s u r e  f i e l d .  The governing equa t ion  f o r  t h e  bubble r a d i u s  R 
i s  : 

We sha l l  r e p o r t  here t h e  r e c e n t  r e s u l t s  on the n o n l i n e a r  

j f c a p p l i c a -  

where y i s  t h e  r a t i o  of  s p e c i f i c  heats; Ra, t h e  e q u i l i b r i u m  
r a d i u s ;  a , a damping c o n s t a n t ;  and t h e  l a s t  t e r m - r e p r e s e n t P  
t h e  e x t e r n a l l y  aml ied  p r e s s u r e  f i e l d .  The d a m p h g  i s  i n t r o d u c e d  
somewhat a r t i f i c a l l y .  The damping due t o  t h e  v i s c o s i t y  o f  l i q u i d  can 
be e a s i l y  r e p r e s e n t e d  a c c u r a t e l y .  However i t  i s  more invo lved  t o  
i n c o r p o r a t e  t h e  damping due t o  thermal d i s s i p a t i o n  and the  v i s c o s i t y  
of  t h e  gas. 

Equat ion (70) i s  e q u i v a l e n t  t o  t he  v a r i a t i o n a l  p r i n c i p l e :  

A J + A I = O ,  (71) 

wher? 

+ 5 R3posin u t )  d t  , (72 )  
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and A I  = - 2a 1 d t  R3;( AR. 
0 

(73)  

Now l e t  us  take 

R = R b o  t R  s in (wt t60 ) tR l  s in (pwt tb l )  . (74)  

I n  more r e f i n e d  t r e a t m e n t ,  we can l e t  R,,60, R1 and 61 a l l  
as s lowly va ry ing  f u n c t i o n  o f  t .  Here f o r  s i m p l i c i t y ,  we s h a l l  
assume t h a t  they  are a l l  r ea l  c o n s t a n t s .  p # 1 i s  t aken  t o  be  
rea l  and p o s i t i v e .  Thus we are look ing  f o r  a s y m p t o t i c a l l y  
p e r i o d i c  s o l u t i o n s .  

i n t e g r a l s  can b e  approximately e v a l u a t e d .  The dominat ing terms 
are t h e  s e c u l a r  terms m u l t i p l i e d  by t .  From t h e  independent  
v a r i a t i o n  o f  A%, ARo, ARl ,  and AB1, w e  o b t a i n  a set  o f  
f i v e  a l g e b r a i c  equa t ions  t o  de te rmine  these f i v e  unknowns. 

If w e  make f u r t h e r  s i m p l i f y i n g  approximations t h a t  the 
s u r f a c e  t e n s i o n  be  n e g l e c t e d  and % - Ra, and t h e  f o r c i n g  ampl i tude  
I s  n o t  ve ry  l a r g e  so t h a t  we  can n e g l e c t  the 3 rd  and higher  o r  e r  
small terms; t h e n  we o b t a i n  t he  fo l lowing  i n t e r e s t i n g  r e s u l t s  :f15) 

S u b s t i t u t e  (74)  i n t o  (72 )  and (731,  t h e n  f o r  large t ,  the  

For p # $ , and p # 2,  w e  o b t a i n  

R1'= 0 , (75)  

However f o r  p = 1 / 2 ,  i t  is  found t h a t  there  is ano the r  branch 
of the  s o l u t i o n  f o r  which R1 # 0 .  
t he  fo l lowing  r e l a t i o n s :  

Th i s  branch i s  determined by 

( W  2 2  -wo)RaR0 + - PO COS 6 ,  = - [us 2 ~ i n ( 2 6 ~ - 6 ~ )  - v 3 aw c 0 s ( 2 6 ~ - 6 ~ ) ] R ~ ,  2 

- PO - s i n  6o  - awRaRo = [wscos(261-60)t 2 q 3 aw ~ i n ( 2 6 ~ - 6 , ) I R ~ , ( 7 7 )  2 

P 

(76)  

0 

T a wR, = -2w,R0cos(261-60)t~ 2 3 awRosin(261-60)- - 
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where us = 2 2 3YPa 

I 

From ( 7 6 ) - ( 7 9 ) ,  we can s o l v e  f o r  R ,R1,80 and 61. The 
d e t a i l s  w i l l  be p re sen ted  elsewhere. (159 
i n fo rma t ion  about  the  t h r e s h o l d  ampli tude p f o r  such s o l u t i o n  
t o  e x i s t ,  the  ampl i tudes  and phases of the  Fundamental and sub- 
harmonic modes of  the  o s c i l l a t i o n .  

They con ta in  t h e  

I f  w e  c a r r y  out  ou r  a n a l y s i s  t o  inc lude  terms o f  t h e  3rd 
o r d e r  small terms, we found tha t  there i s  a l s o  ano the r  branch 
of  t h e  s o l u t i o n  f o r  which Rl#O i f  p =l/3. 
have also been found independent ly  by P r o s p e r e t t i .  

t o  the  n o n l i n e a r  o s c i l l a t i o n s  of  nonsphe r i ca l  bubbles .  But 
t h e r e  are s t i l l  formidable  p r a c t i c a l  problems t o  overcome. It 
may be remarked t h a t  t he  v a r i a t i o n a l  methods has been succ  q u l l y  

The approximate t r i a l  s o l u t i o n  we t a k e  c o n s i s t s  of  t h e  s p h e r i c a l  
mode and the  s p h e r i c a l  harmonic mode of degree  2 .  This  i s  found 
t o  be a f a i r l y  good approximation.  However, f o r  t h e  o s c i l l a t i o n  
problem, it seems t h a t  h ighe r  s p h e r i c a l  harmonics may be 
impor tan t  and i t  i s  no t  c l e a r  t h a t  a s i n g l e  harmonic mode i s  
adequate  as a f i r s t  approximation.  F u r t h e r  s tudy  i n  t h i s  area i s  
cont  i n u i n g  . 

These subharmonic 
(16) 

I n  p r i n c i p l e ,  t h i s  v a r i a t i o n a l  technique  can a l s o  be a p p l i e d  

appl ied  t o  the  s tudy  of  c o l l a p s e  of a nonsphe r i ca l  bubble .  P h ?  

I 
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ON THE OSCILLATIONS OF DROPS AND 

BUBBLES IN VISCOUS LIQUIDS 

$ Andrea P r o s  pe ret t i  
California Institute of Technology, Pasadena, California 

INTRODUCTION 

The normal-mode approach to problems of small-amplitude 

The method consists in assuming an exponential time depend- 
waves in fluids is a standard one and has been widely used in the 
past. 
ence of the type exp(-o,t) for all the dependent variables and in de- 
riving a charac te r i s t ics  equation fo r  the complex eigenfrequencier 
On (see  e. g. Ref. 1, Ch. X, XI). The solution to a par t icular  initial- 
value problem is then obtained in the form of a s e r i e s  by a superposi-  
tion of the various normal  modes with appropriate coefficients. 

In the presence of viscosity the equations governing the 
motion become parabolic, and the series in question i s  usual ly  very  
slowly converging for  smal l  t imes.  However, for f r ee  (damped) 
oscillations, the small- t ime behavior is of considerable in te res t  
fo r  many important aspects ,  such a s  questions of stability, so that 
a different f o r m  of the solution is needed. 
present  paper to analyze the problem from this point of view, eluci- 
dating the charac te r i s t ics  of the small- t ime behavior of the oscil la- 
tions of drops and bubbles about the spherical  shape. 

It i s  the purpose of the 

For  the case  of a viscous liquid drop in a medium of negligible 
dynamical effects (vacuum, a i r )  it i s  found that, if the motion is 
i r rotat ional  a t  the initial instant, the effective damping and frequency 
agree with those given by Lamb (Ref. 2, p. 640) and Rayleigh (Ref. 8) 
for  small times. However, a s  t ime passes ,  the vorticity that is 
generated at  the surface s t a r t s  to diffuse inwards bringing about an 
increase  in the effective damping. The normal-mode resul ts  of 
Chandrasekhar  (Ref. 1, p. 675; Ref. 3) and Reid (Ref. 4) a r e  
recovered as t-oo. It is interesting to notice that the relaxation 
of the system towards the asymptotic regime is not exponential, 
but only algebraic with time. 
the asymptotic effective damping is smal le r  than the initial one. 

Another remarkable  feature is that 

$ On leave of absence f rom Istituto di Fis ica ,  Universitd Degli Studi, 
Milano, Italy. 
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Similarly,  f o r  the case  of a bubble in an unbounded liquid, Lamb's 
i r rotat ional  results (Ref. 2, p. 641) are reproduced fo r  smal l  times, 
whereas  the asymptotic solution coincides with that derived by Miller 
and Scriven (Ref. 5) in  a normal mode framework. 

PRELIMINARIES 

We consider a nearly spherical  free surface C( t )  separating two  
incompressible,  viscous, immiscible fluids that f i l l  the ent i re  space. If 
body forces  a r e  negligible, the equilibrium configuration of C is main-  
tained by surface tension and is that of a sphere;  the p r e s s u r e s  in  the 
inner  and outer regions are uniform, and they a r e  related by: 

2T 
P1 - P2 = R 

where T is the surface tensioh and R the equilibrium radius.  The 
outer p r e s s u r e  p2 will be taken a s  reference value and se t  to  zero.  
the following the subscr ipts  1 and 2 will be attached to a l l  quantities p e r -  
taining to  the inner and outer region respectively. 
indicated, reference can be made indifferently to  e i ther  region. 

In 

When no subscript  is 

When the equilibrium situation is slightly perturbed, the ensuing 
motion is governed by the (l inearized) Navier-Stokes equations: 

where v' denotes velocity and p, p a r e  the density and viscosity of the 
fluid 8 .  

The surface C can be represented by a superposition of spherical  
To first order  in the perturbation of the spherical  symmetry,  harmonics.  

however, the equations for  the differentnndes a r e  uncoupled so that we 
may consider a single one; in  spherical  coordinates we thus let: 

z (t) : F(r, 8, t) Z r - R - Ca(t)Pn(cos 0) = 0 ,  ( 4) 

where 0 < e C < 1, and Pn is a Legendre polynomial of degree n 2 2. 
In writing Eq. (4) it has been assumed for  simplicity that the surface 
maintains an axial  symmetry; this  restrictionfwhich can be lifted by 
adopting the toroidal-poloidal formal i sm for  the description of the 
velocity field, see Ref. 1, p. 622), has no consequence on the equation of 
motion for  a(t) .  

In the following developments only t e r m s  of first order  in  e will 
be retained. To this approximation the outward unit normal ?i to  C i s  
given by the expression: 

d a dPn - 
n = e l - e  a de e o ,  

. .  . 

(5) 
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where er , 
respectivel;! On the free surface the kinematical boundary conditions 
a re  (Ref. 6, pp. 60, 148): 

are unit vectors in the radial and azimuthal direction 

where the subscript t 
to the free surface. 
condition applies. 
there should be no discontinuity in the tangential stresses: 

denotes the tangential component of the velocity 
If one of the two fluids is inviscid, only the first 

The dynamical boundary conditions stipulate that 

and that the discontinuity in the normal stress should equal the surface 
tension T times the total curvature: 

n * [ (a ,  - ul)n] = T V en . 
In these equations the stress tensors 
inner and outer sides of C respectively. 
the requirements of regularity at infinity and at the origin must be added. 

(9) 
A - 6  

u1 and u2 are  evaluated on the 
To the above boundary conditions 

It is convenient to separate out the effect of viscosity by writing: 

u = u t v  

where is the potential flow velocity of the inviscid case satisfying: 

(1 Oa) 
* -.. - 4  

u = evcp v * u = O  

? ( e % + $ =  0 

From Eq. (3) one then deduces the following equations for $: 

i 

where v = r / p  is the kinematic viscosity and the pressure has been 
split into two parts, p=potp'. In order to satisfy (13a) identically, we 
introduce a stream function representation of the viscous flow field: 
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Results of the type of those obtained by Chandrasekhar, Reid, 
Miller and Scriven can now be derived by assuming an exponential time 
dependence of the various quantities. 

SOLUTION O F  THE FLUID MECHANICAL PROBLEM 

The solution of the potential problem (IO) can be taken from 
Lamb (Ref. 2, p. 121) or  Plesset (Ref. 7 )  as: 

(15) 

(16) 

I R-n+l r n 3Pn 

'p2= -n+l r dPn 

'g=; 

1 Rn+2 -n-1 

where dots denote time differentiation. Eq. (11) then determines the 
inviscid part of the pressure to be: 

plo- 2T cR-n+l  n .. - - - - -  r a P n  
P I  R P l  n 

pz" e Rn+2r-n-1 
'n 

- = -  
p 2  n+l 

To solve for the viscous component of the flow we introduce the 
vorticity = c X G ,  in terms of which Eq. (12) becomes: 

The solution can be found by separation of variables as: 

(20) 
cp 

where P: is an associated Legendre polynomial, e = e X ee , and 

1 A 

u) = n(r ,  t) pn(cos e)  

n(r, t) is the solution of: Q r  

The boundary conditions for this equation a re  that an l l a r  vanish at the 
origin and 3 at infinity, and that nl(R, t) , n2(R, t) equal two functions 
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nol(t), noz(t) that will be determined by the conditions at the interface C . 
As initial condition we assume n(r,  0) =f(r) ,  with f(r) a prescribed function. 
Eq. (21) can now be solved by taking its Laplace transform with respect to 
time. The solutions satisfying the appropriate initial and boundary condi- 
tions in the two regions are: 

R 

m 

where the tilde denotes the Laplace transformed function, p is the trans- 
formed variable and: 

The stream function $ is determined by integration of Eq. (14) 
to be: 

n n+l Hr, 8, t) = Y ( r ,  t)  [ pn- l(cos 8 )  - pntl (cos 011 

where: 

One of the integration constants has been eliminated with the aid of 
Eq. (13b) which requires: 

'h writing Eqs. (20), (21) the effect of the boundary condition (8) 
has been partially anticipated in that the separation constant has 
been set at vn(nt1) instead of that at  vk(ktl), with k an integer 
to be determined. 

I 
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and the other, c(t), is determined by the regularity requirements at 
the origin and at infinity: 

R 

cl(t) = - J8nt2nl(S,t)ds (25a) 

c2(t) = RZnt1 Is-nt1 n2(s, t)ds (25b) 

0 
OD 

R 
Now the modification to the pressure introduced by viscosity can be com- 
puted from Eq. (12) with the result: 

In the following we shall restrict the analysis mainly to the case 
in which the initial vorticity distribution vanishes, f(r) = 0. This will 
happen for instance if the oscillations start from a position of perturbed 
equilibrium with zero initial velocity. 
forms of c(t) have the following expressions: 

In this case the Laplace trans- 

THE EQUATION OF MOTION O F  THE INTERFACE 

We shall now apply the remaining boundary conditions and derive 
the equation of motion of the interface. 
tangential velocity, Eq. (7), we get: 

From the continuity of the 

The continuity of tangential stresses, Eq. (8) reduces to: 

n- 1 

These two equations determine noi(t), Q z ( t )  in terms of a(t); the 
remaining boundary condition on the normal stresses, Eq. (9),plays then 
the role of a consistency condition and yields the following equation of 
motion for a(t): 
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The set of simultaneous equations (27), (28), (29) describes the motion 
of the interface. 
equations, which can be solved for the Laplace-transformed functione. 
The final step of inversion of the transforms, however, does not appear 
to be possible without recourse to numerical methods. The following 

It is a system of three linear integro-differential 

’ sections describe some approximate results. 

THE OSCILLATIONS O F  A VISCOUS LIQUID DROP IN AIR 

W e  consider first the case in which the fluid occupying the outer 
region has negligible dynamical effects, so that is is appropriate to 
neglect p , p2 compared to ul, pl. This would be the case, for 
example, $or a liquid drop in a vacuum or  in air. 
Eq. (7), the condition of continuity of tangential velocity does not apply 
to this case, so that Eq. (27) should be neglected. Further, setting 
p2 = 0, 

As was noted after 

p2 = 0 in Eqs. (28), (29 )  and dropping the subscript 1, we get: 

2R-n-3 c (t) t no(t)  = - n-1 - 2 
n E a  

The quantity c(t) is given by Eq. (25a) or  (26a). 
combination of (30), (31) one obtains: 

Observe first that by 

! 

R 
t 2n(n- l ) (n i - l )~R-”-~r  snt2n(s, t)ds = 0 

5 
If a(r, t) is so small that the last term is negligible, we can read 
directly from the equation the frequency wo and the decay constant 7 
of the oscillations: 

d i 
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-1 V 

R 
Td = (n-1)(2ntl) 7 

The first of these equations is the result obtained by Rayleigh (Ref. 8) 
for the oscillations of an inviscid drop, the second coincides with the 
expression derived by Lamb (Ref. 2, p: 640) in the approximation of 
irrotational flow. 
terms of a .  
deduces that: 

To proceed further it is  necessary to express n in 
Taking the Laplace transform of (30) and using (26a) one 

where q = R(p/v)$ * This equation shows the connection between the 
superficial vorticity and the velocity of deformation of the drop shape. 
Substitution into (32) and application of the convolution theorem for the 
Laplace transform yields: 

where 

and Q(t) is defined by its transform as: 

On physical grounds one expects the solution of Eq. (34) to have 
the form of modulated oscillations; we therefore let: 

a(t) = 

where A is a complex constant and u(t)  a complex function of time. 
order to bring out the relation to the irrotational oscillations it is also 
expedient to define a new dependent variable: 

In 

u(t) = expC-Cu(t) - uol tI (35) 

l(q)/I (9) is a particular 
case of modified quotients of cylizder fun&ons, ghich a re  treated in 
Ref. 9. 

$It may be noted that the function ?' (9) = qI  
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(where 

is the complex frequency of the irrotational oscillations) so that: 

a(t) = Ae-Ootu(t) (37) 

Without loss of generality we may also take u(0) = 1, 6(0) = 0. 
Substituting (37) into (34) and taking the Laplace transform we find: 

The inversion of this function appears to be a hopeless task analytically, 
and one must have recourse to numerical techniques for a f u l l  solution. 
Here we shall content ourselves with an approximate solution valid for 
small times and an investigation of the asymptotic properties for t -+ a0 . 
comparison with (35) we deduce*: 

Upon expansion of (38) in series, term by term inversion, and 

Figure 1 is a plot of the first three terms of this equation for 
2 s n s 5. There are some features of this result which a r e  worth 
noticing. 
factor of the system increases with time in the early stages of the 
motion. This characteristic is not surprising in view of the fact that 
the energy equation can be written in integrated form as (Ref. 2, p. 581): 

The first and most apparent one is the fact that the damping 

w 2 dV+ ;*[(e ?)b] dS} 3 -p{Jv & 
where E is the total energy of the system, V its volume and S the 
surface bounding V. Only the second term of this equation is nonzero for 
an irrotational flow, and in our case it gives rise to the decay constant 

*It may be of some interest to note that if one requires that the first 
power of time occurring in (39) be as high as possible, one obtains an 
equation for uo whose solution is given by (36). 
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7:' in the very first, approximately irrotational stages of the motion. 
The contribution of the first term, however, increases from zero as the 
vorticity generated at  the surface (cf. Eq. 33) gradually diffuses into the 
drop, and brings about the increase in damping shown by Eq. (39). A 
remarkable characteristic of this increase is tha 

feature,on which the small-time accuracy of the irrotational results 
rests in practice, is produced by a cance 

diffusive terms of Eq. (40). 

although i is due to 
a diffusive process, its time dependence is not t k but only t i . This 

contributions (i. e. those proportional to t v and 't) of the convective and 
tion between the lowest order 

To investigate the behavior of a(t) for large values of time we let: 

where is a constant to be determined in such a way that: 

&XI v(t) = constant 
*a 

The Laplace transform of v(t) can be expanded near p =  0 with a result 
of the form: 

with B, C constants. To satisfy (41) we thus must require B = 0; 
this condition, written out in full, reads: 

which coincides with the Chandrasekhar-Reid equation. It is therefore 
seen that the result of the normal mode analysir a r e  recovered asymptotically 
as t+ a. It is interesting to note that in this limit the distribution of 
vorticity inside the droplet is an equilibrium distribution which satisfies 
q. (19) with a vanishing LHS. Indeed, from Eqs. (33), (22), (20) one 
obtains that, as p+O: 

which is a solution of & = O .  It is easy to show that Eq. (42 )  holds 
also for an arbitrary initial vorticity distribution. W e  shall not attempt 
here to discuss in detail the differences between Eqs. (39) and (42). We shall 
restrict our attention to the case of initially critically damped oscillations, 



-1 w = T 
b&!co&i& aperiodic, i. e. 

for which the initial (irrotational) motion changes nature 
to the case: 

Chandr sekhar (Refs. I, 3) gives a short table of the maximum values M 

than M would result in damped oscillations. The comparison with 
Eq. (44) is as follows: 

of wOR 3 /v that give rise to aperiodic decay; values of woR2/v greater 

L n =  2 M = 3.630 w0R /v = 5  

n =  3 M = 6.026 woR /v = 14 

n =  4 M = 8.457 wOR /v = 27 

2 

2 

Therefore it is  seen that, even if the motion is initially aperiodic, it 
changes nature at a certain time to become oscillatory. 
suggests very strongly that in general the damping factor corresponding 
to Eq. (42) is smaller than that given by the irrotational approximation, 
but no general proof can be furnished for this conjecture. 
result (33), one would then conclude that the effective damping factor at 
first increases and then decreases with time. 

THE OSCILLATIONS OF BUBBLES AND OF UQUID DROPS IMMERSED 

This circumstance 

In view of our 

IN ANOTHER LIQUID 

The case in which it is the inner liquid to have negligible dynamical 
effects can be treated analogously to what w a s  done in the preceding section. 
Setting p1 = 0, pl = 0 and dropping the subscript 2 ,  we obtain: 

-n- 3 2 nt2 a no(t) +2R c(t) = - - - R n+l 

Again eliminating no, Eq. (45) becomer: 

+ 2n(ntl)(nt2)vR n-3 r" P + I  n (8 ,  t)ds = 0 (47) 
"R 
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from which the irrotational frequency and decay constant follow as: 

Both these results a r e  given by Lamb (Ref. 2, pp. 475, 640). 
vorticity and velocity of deformation a r e  found to be connected by: 

The surface 

9 = R(p/v) 9 
and the f inal  equation for a(t) is obtained in the same form as Eq. (34), 
in which the kernel is now given by: 

The small-time behavior of the modulated frequency u(t) is found in the 
same way as was done before, with the result: 

The similarity between this result and Eq. (39) is apparent. 

For  the large-time solution the same procedure applied before 
yields in this case the characteristic equation: 
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After some simplifyhg mathematical manipulations, the result obtained 
by Miller and Scriven by means of a normal mode analysis (Ref. 5) can 
be brought to the form of Eq. (49). Again there is  a striking similarity 
between this result for the bubble and that obtained before for the drop, 
Eq. (42). 

For the case in which both fluids have non-negligible dynamical 
effects (drop in liquid), the analysis is more complicated and also, for 
certain aspects, qualitatively different. 
because the two fluids are now coupled through the no-slip boundary 
condition at the interface so that Eq. (27) must be used. 

Physically this comes about 

In this case one 
finds that: 

Eol(P) = 

Ro2(P) = 

T 
t (n+ 1) P 1 +n pz %+I a(t-T)H(T)dT + (n - l ) (n+Z)Ta  R = 0 (50 )  

n(n+l) 0 

where: 

It should be noticed that, although the irrotational frequency of 
oscillation can be read from Eq. (50 )  to be: 

(cf. Lamb, Ref. 2, p. 475), it is not possible to put (50 )  in a form 
analogous to (32) or  (47). 
can be determined by the method explained in the footnote on page 9 to be: 

Nevertheless the irrotational decay constant 

I 
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It can be verified that this expression reduces to the ones for the isolated 
drop and bubble when u2 or  u1 vanish. The first ti e-dependent term 
in the equation for o(t) is also in this case of order 3 . 

A more complete analysis will be published elsewhere. 
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NON-LINEAR EFFECTS ON DROPLET DEFORMATION 

P.G. Simpkins * 
Department o f  Aeronautics and Astronautics 

Southampton University, England 

1. INTRODUCTION 

When a liquid droplet moves through an ambient fluid 
a natural oscillation is set up between the aerodynamic 
forces tending to distort the drop, and the surface tension 
forces seeking to restore the shape to the profile with 
minimum surface energy. A large amount of experimental 
evidence has established that when the Weber number exceeds 
a value of order unity, large deformations from the spherical 
profile occur and ultimately the droplet ruptures. During 
the deformation process the droplet develops from a disc- 
like shape into a canopy which resembles either a parachute 
or a parasol. Photographs of such highly distorted drops 
have been tak n by Lane and Green7, Hanson, Domich and 
Adamsa, Wolfe' and the authorlo for a variety of liquids 
from water to mercury. Figures (1) and ( 2 )  illustrate 
the two types of behaviour that occur for Weber numbers 
greater than unity and are typical of pictures recorded by 
numerous experimenters. Table 1 summarizes the observations 
made of the response characteristics, and illustrates the 
uncertainty in predicting the behaviour. Whereas the 
author's data suggests the bag response occurs at Weber 
numbers below those for which the parasol is generated, the 
observations of others do not always support this contention. 
I t  should be emphasized that these response characterietics 
are the result of aerodynamic forces and that the droplet 
is not unstable in a rigourous sense, i.e. the distortion 
does not grow exponentially in time. An instability of the 
windward surface does occur when the induced acceleration 
of the droplet becomes very large. The resulting Taylor 
instability has been the subject of a recent paper by 
Harper, Grube and Chang.ll 

Although the occurrence of the large deformation and 
break-up phenomenon is now experimentally well-established, 
attempts to predict the incipient conditions have been 
limited to semi-empirical approaches. One of the earliest 
estimates of the critical Weber number Wec was given by 
Hinze3 who Considered the two cases of large and small 
liquid viscosity. For the purpose of the discussion Wec 
is taken to be that value at which the droplet ruptures. 
For small viscosity fluids, Hinze compared the linear 
theory expressions for the surface displacement at the 
stagnation point to a series of experimental observations. 
By these comparisons he deduced that 6 Wec 10 depending 
on the initial conditions applied to the drop. Such 
estimates however can at best be only subjective since as 
Hinze himself notes the critical deformation, which leads 
to the breaking up o f  a droplet, has a value far exceeding 
that tolerable by linear assumptions. In a more basic 
approach Gordon2 equated the energy required to displace 
a.cylindrica1 section from a droplet exposed to an external 
flow. To do this Gordon estimated the aerodynamic, viscous 
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and s u r f a c e  t e n s i o n  f o r c e s  and combined t h e s e  w i t h  t h e  
i n e r t i a l  e f f e c t s  t o  o b t a i n  an expres s ion  f o r  time-dependent 

. s u r f a c e  displacement .  A s  a r e s u l t , a  va lue  of Wec = 8 was 
p r e d i c t e d .  Golovin4(") examined t h e  case  i n  which t h e  
e x t e r n a l  f low about  t h e  drop was assumed t o  be p o t e n t i a l  
b u t  t h e  i n t e r n a l  l i q u i d  motion had f i n i t e  v o r t i c i t y .  To 
make t h i s  connect ion Golovin argued t h a t  t h e  i n t e r n a l  
r o t a t i o n a l  motion i s  d r i v e n  by v i scous  f o r c e s  i n  t h e  l i q u i d  
near  t h e  i n t e r f a c e .  By equa t ing  t h e  i n t e r n a l  dynamic 
p r e s s u r e  g r a d i e n t  t o  t h a t  i n  t h e  e x t e r n a l  p o t e n t i a 1 , f l o w  
he deduced t h e  normal modes f o r  t h e  s u r f a c e  v i b r a t i o n  of 
t h e  above model, and a c r i t i c a l  va lue  of W e c  = 2 . 5 .  I n  a 
subsequent  paper  Golovina(b)  examined t h e  problem assuming 
a p o t e n t i a l  f low i n  t h e  d r o p l e t  i n t e r i o r .  I n  t h a t  c a s e ,  
he deduced a va lue  of Wec = 2 . 2 .  
Golov in*s4  work t h e  p r e d i c t i o n s  f o r  Wec a r e  based on l i n e a r  
t heo ry  and whereas Gordon's2 energy method i m p l i c i t l y  r e l i e s  
on t h e  assumption t h a t  v i scous  e f f e c t s  may be r e p r e s e n t e d  
a s  a P o i s e u i l l e  flow. None of  t h e  above approaches has  
accounted f o r  the i n t e r a c t i o n  which occur s  between t h e  
d r o p l e t  and t h e  e x t e r n a l  f low a s  t h e  d i s t o r t i o n  grows. 

I n  both Hinze3 and 

Recen t ly ,  c a l c u l a t i o n s  of t h e  higher-order  approxim- 
a t i o n s  t o  t h e  e q u a t i o n s  of motion have been performed by 
Harper,  Simpkins and Grube5 i n  which t h e  coupl ing between 
t h e  d r o p l e t  d i s t o r t i o n  and t h e  p r e s s u r e  d i s t r i b u t i o n  e x e r t e d  
by t h e  e x t e r n a l  f low on t h e  drop a r e  taken i n t o  account .  
Th i s  paper  w i l l  b r i e f l y  review t h e  n a t u r e  of t h e  d r o p l e t  
r e sponse  i n  t h e  v i c i n i t y  o f  t h e  c r i t i c a l  Weber number. I n  
S e c t i o n  2 t h e  l i n e a r  t heo ry  w i l l  be desc r ibed  f o r  t h e  
l i m i t i n g  c a s e s  of We e 1 and We ,> 1. These l i m i t s  show 
t h e  d r o p l e t  response t o  be v i b r a t o r y  and a l g e b r a i c  f u n c t i o n s  
of t ime,  r e s p e c t i v e l y .  Subsequent ly ,  i n  S e c t i o n  3 ,  t h e  
method of improving t h e  e s t i m a t e  f o r  t h e  t r a n s i t i o n  p o i n t  
between t h e  two r e sponse  c h a r a c t e r i s t i c s  i s  d e s c r i b e d .  I n  
S e c t i o n  4 t h e  g e n e r a l  three-dimensional  response c a s e  i s  
d i s c u s s e d  and t h e  occur rence  of  degene ra t e  o s c i l l a t i o n s  i s  
noted.  

2 .  REVIEW OF THE L I N E A R  TEEORY 

The v i b r a t i o n a l  response of a l i q u i d  d r o p l e t  about  a 
s p h e r o i d a l  shape was o r i g i n a l l y  e s t a b l i s h e d  by Rayle igh l  
from a l i n e a r  a n a l y s i s .  The shape of t h e  d r o p l e t  can be 
r e p r e s e n t e d  i n  s p h e r i c a l  co -o rd ina te s  ( r ,  8, 6) a s  

n = 1 + C anPn(cos8)  
n=o 

where n = r / ~ ,  pn i s  t h e  nth o r d e r  Legendre f u n c t i o n  of  t h e  
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first kind, R is the radius of the unperturbed sphere, and 
the coefficients an are functions of time. Rayleigh’s 
results, obtained from energy principles, showed that 
an = bn cos wnt and that the non-dimensional eigen- 
frequencies wn are given in terms of a modified Weber 
number by 

i 
The Weber number We, which is a measure of the dynamic 
pressure force compared to the surface tension, restoring 
force, is expressed as 

2 

We = P -  = € W e  
UOaR 
0 ( 3 )  

where E = p / p  is the ratio of the gas-liquid density ratio, 
U, is the external airstream velocity and u is the surface 
tension. 

More generalized treatments of the droplet response 
problem have been given by Landau and Lifshitz12 and by 
Harper, Grube and Changll. The former authors have shown 
that for each of the axi-symmetric modes there are (2n + 1) 
oscillations, i.e. the frequencies are degenerate. This 
aspect will be discussed further in Section 4 . .  The results 
of Harper, Grube and Chang on the other hand gave an 
explicit result for the axi-symmetric response of a 
vibrating droplet, which is 

The coefficients Cn in equation ( 4 )  are determined from the 
external pressure.distribution on the droplet. 

An important change in the response characteristics is 
observed when cos wnt is expanded for wnt < <  1. In that 
circumstance the surface displacement is found to be 

1 2 2 n(e,t) = 1 + E L E n(2n + 1) Cn Pn(cosB)t + O ( E  1 
n=o 

(5) 

i.e. the droplet now executes an irreversible distortion which 
is algebraic in time. This limiting procedure, wnt < <  1, 
is strictly not one which implies t + 0 but more realistically 
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that We + 0 0 .  Therefore, it may be stated that in the absence 
of surface tension the droplet response to an external flow- 
field is one of continuous distortion; a conclusion which is 
implicit in Rayleigh's original result. 

T o  illustrhte the linearized response characteristics 
consider an external potential flow associated with a rigid 
sphere, for which the pressure distribution is given by 

9 2 Pe(B) = 1 - ( /4)sin e 

The droplet response to such an external field has been 
established by a number of authors as 

This characteristic is shown in Figure ( 3 )  from which it is 
observed that the axial thickness decreases to zero when the 
normalized time t = 32.7. If instead the external flow is 
considered to be one in which flow separation occurs, then 
the predicted droplet response is altered significantly. 
~ i n z e 3  used a pressure distribution of the form . 

n / 3 < 6 < n  = const 

as a means of estimating a value for the critical Weber 
number. More recently the pressure distributions on a rigid 
sphere recorded by Maxworthyl3 have been synthesized by an. 
eighty term series and used to calculate the transient 
response of a droplet. Results taken from these calculations 
are given in Figure ( 4 ) .  For small times the predicted 
response is in good agreement with experimental shock tube 
studies, however €or values of t > 15 say the predictions 
are less realistic. This result is not unexpected since as 
the droplet distortion grows the external flow about it is 
modified. Thus, the applied pressure distribution changes 
and the assumption that it is similar to that on a rigid 
sphere is no longer valid. It is this non-linear coupling 
which will be discussed in the next section. A comparison 
between the two linear models described above and data taken 
from a bag-type response is given in Figure (5) where the 
ordinate (b/a) is the ratio of the minor to major axes. The 
data support the conclusion that €or t 15 the predicted 
response is good a representation of the behaviour. However, 
the predictions suggest a rate of distortion greater than 
that observed. 
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3. NON-LINEAR EFFECTS 

The previous section illustrated how, between the 
limits of We << 1 and We +-, the droplet response changes 
from a vibratory characteristic to one which is monatonically 
deforming in time. A question that therefore naturally 
arises is, can an estimate be made of the value of the Weber 
number at which the vibrational response ceases and the 
continuous distortion begins? We use this aforementioned 
criterion as a definition for the critical Weber number, 
Wec. Other investigators, as has been previously noted, have 
based their estimates of Wec on when the droplet ruptures. 

In examining the higher-order terms of the equation 
of motion Barper, Simpkins and GrubeS have considered the 
droplet as a non-linear oscillator for which the forcing 
term represents the external air flow. The non-linearity 
in the problem causes a change in the modal frequencies which, 
when evaluated, allows a revised estimate of the surface 
displacement to be made. To reduce the algebra to manageable 
proportions the external flowfield is considered to be the 
potential flow given by equation (6) for which Pe(0) - P2(cosB). 
In the higher-order approximation a regular perturbation in E 
is not uniformly valid because of the appearance of secular 
terms of the form t sinw2t. These secular terms arise 
because the linear response to an external potential flow 
has a displacement n ( 0 , t )  - P2(cosB). Thus, when in the 
higher-order approximation a forcing function proportional 
to P2(cosB) is introduced it excites a P2(cosB) mode at 
exactly the fundamental frequency giving rise to a resonant 
condition. 
been used to render the estimated response uniformly valid 
and the correction to the eigen-frequency is found to be 

The PLK co-ordinate stretching technique6 has 

so that to first-order, the surface displacement now becomes 

The result for the corrected eigen-frequency, equation ( 8 1 ,  
shows that when u = 1, i.e. We < <  1, the effect of the non- 
linear interaction is to reduce the frequency below that of 
the fundamental. In the limit u + 0 with t bounded it is noted 
that the droplet will begin to deform continuously as the Weber 
number approaches the critical value We = 3.85. Thus the higher- 
order analysis yields an estimate for the commencement of the 
distortion when We - O ( 1 )  rather than the linear result 
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of We + w .  

result of non-linear effects is shown in Figure (6) as a 
function of We. 

The reduced frequency ow2 which develops as a 

Because of the non-linear interaction between the 
distorted droplet and the external potential flowfield the 
second-order correction to the surface displacement is found 
to be of the form 

cosaw t cos 2aw2 t 
3 

w2 
n (2) (e,t) rJ E 2  {P2 (case) [Kl 

+ K2 
2 

sinaw3t sinaw2t 
3 - 

2 + P3(COSB)K3[ w3 W 

terms in cosdwqt, 

and higher harmonics (10) 

where the K's are constants to be evaluated. Two interesting 
features therefore emerge from the high-order analysis. ~ 

Firstly, an anti-symmetric term, i.e. the P3 mode, is found 
in the surface displacement in response to an external 
pressure distribution which was initially symmetric. 
Secondly, as We increases through Wec the sign of a changer. 
This sign change affects only the anti-symmetric P3(cosB) 
mode because the symmetric modes only contain terms in 
cosawnt and their higher harmonics. 
passes through the critical value the droplet response 
changes. In the potential flow model under discussion it 
would in effect appear as though the freestream direction 
had been reversed. 

Consequently as We 

4. DISCUSSION 

It is of interest to consider briefly the more 
general treatment of the response described by Landau and 
Liftshitz12. Let the deformed surface be described in terms 
of the spherical harmonic functions Ynm(B,6) as 

where 

(11) 

(12) 

I 

! 

i 
i 
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and Pm(0) are associated Legendre functions of the first kind. 
Then ?or each mode n of the eigen-frequency Wn there are 
(2n + 1) different oscillations corresponding to m - 0, +II - +2 ..... +n. The oscillations are therefore degenerate, since 
at any paTticular eigen-frequency there is more than one 
oscillation which satisfies the first-order equations of 
motion. Since both t m  give rise to the same oscillation there 
are, however, only (n + 1) independent oscillations. Thus, 
for the fundamental n = 2 mode, there are three independent 
oscillations, (i) the axi-symmetric P~-rnode, (ii) an anti- 
symmetric Pi-mode and (iii) a symmetric Pj-mode. The latter 
three-dimensional modes are tabulated in standard textsll ,15 
and shown in Figure ( 7 ) .  The Pi-mode gives rise to a trans- 
verse oscillation which wavers about an axis through the poles 
in the manner shown in Figure ( 7 ) .  Since the nodal line is a 
great circle through 4 = n/2 zero displacement occurs when 
0 = 1ln/2. The modal response is more complicated since 
the nodal lines are in planes normal to the equator through 
4 = +n/4. The projected profile in the equatorial plane 
tbergfore resembles an ellipse whose major axis oscillates 
between two normal directions parallel and perpendicular to 
the freestream velocity vector. The occurrance. of this P$ 
mode is of interest since it illustrates that the droplet can 
seek to become distorted in a direction parallel to the 
freestream. 

When the non-linear effects are taken into account it 
i g  found that even for just a P2-mode in the external flow, 
the droplet response is excited not only in the w2 eigen- 
frequency, but also in w3 and w4. Thus additional degenerate 
oscillations occur each associated with the higher-order 
eigen-frequencies. Of the modes established by the non- 
linearity, those associated with the P3 and Pi-modes are of 
most germane to this discussion. These modes, whose 
characteristics are similar to P$ , intensify the droplets 
inclination t o  become extended in the vicinity of the 
stagnation point. A t  the same time the region over which 
this extension occurs becomes more restricted in 0 as the 
number of nodes increases with m. Whether the occurrance 
of the degenerate oscillations is the reason for the two 
types of response observed beyond the critical Weber can only 
be conjecture at this time. It is however noteworthy that 
both the bag and the parasol responses have been recorded 
by different experimenters at approximately the same Weber 
numbers. . 

5. CONCLUSIONS 

The following remarks summarize the principle points 
of this paper. 

(i) Solutions of the second-order equations of motion 
show that for an external potential flow the fundamental 

~. . , . .  . . . - - -. . . . . . . - ... . . .. . . . . - - . . 



379 

eigen-frequency is reduced by an amount [l - (We/3.85)] as 
a result of the non-linear interaction between the droplet 
and the freestream. 

(ii) The non-linear analysis suggests that the 
transition from the vibratory to the algebraic response occurs 
at about Wec = 3.85. 

(iii)The appearance of higher-order modes in the 
predicted surface displacement introduces a number of. 
degenerate oscillations each associated with a particular 
eigen-frequency. Specific modes of some of these degeneracies 
have the effect of causing the stagnation point on the droplet 
to become elongated. These degenerate modes may give rise to 
the observed effects beyond Wec where two types of response 
occur whose characteristics resemble (a) a bag, and (b) a 
parasol. 
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DEFORMATION AND BURST OF SINGLE DROPS 

IN A VISCOUS FLUID* 

Andreas Acrivos 
Stanford University, Stanford, California 94305 

ABSTRACT 

The motion of small drops in a viscous fluid is considered theoret- 

ically and experimentally. 

moving steadily in a quiescent fluid, and neutrally buoyant drops freely 

suspended in a linear shear field. 

for the shapes of these drops, and these are compared with the available 

experimental data. The conditions under which bursting of drops is expec- 

ted to occur, plus the application of the basic data involving single drops to  

the interpretation and prediction of the dispersion performance of static 

mixers, a r e  also discussed. 

Two cases a r e  examined in some detail: drops 

Theoretical expressions a r e  presented 

INTRODUCTION 

Flow phenomena, which involve the motion of drops and bubbles in 

Familiar examples, 
viscous liquids, a r e  known to occur frequently in nature and to play an im- 
portant role in many processes of physical interest. 
taken from different branches of engineering, include: agitation induced by 
bubble motion, the removal of carbon monoxide in Open Hearth Steelmaking, 
mass transfer f rom a dispersed liquid phase into another a s  in liquid-liquid 
extraction, lift pumps, the flow of emulsions whose non-Newtonian charac- 
terist ics a r e  often very striking, the dispersion and mixing of one viscous 
fluid into another, and many more.  Although these systems are,  in general, 
much too complicated of course to permit their quantitative theoretical 
description, many of their basic features can be modeled, sometimes to a 
surprisingly accurate extent, by considering the detailed behavior of the in- 
dividual drops in the two-phase mixture. Thus, for example, the efficiency 
of a liquid-liquid extraction contacting device is closely related to the r ise  
velocity of the liquid drops comprising the dispersed phase, while the dis- 
persion performance and power requirements of static mixers a r e  strongly 
affected by the breakup characteristics of single drops in a shear field. 
Thus, the flow past single drops and bubbles is a subject not only of consid- 
erable academic interest but also of potential practical applicability to many 
diverse processes in engineering and science. 

* 
Work supported in part by the National Science Foundation. 
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In what follows, we shall review briefly some of the more important 
theoretical and experimental results pertaining to two areas  of the above 
field: (a) drops moving steadily in a qui'escent fluid; and, (b) neutrally 
buoyant drops freely suspended in a linear shear flow. Only the case of 
laminar motion will be considered. 

THE RISE VELOCITY OF BUOYANT DROPS 

Harper [ 1 J has already presented an excellent and detailed review of 
this subject, and hence we shall restrict  our discussion to some of the high- 
lights. 

The basic relation which determines the terminal velocity of a single 
drop is  the simple force balance 

3 drag = a g ( p -  P I )  

where 5 is  the known equivalent radius of the drop, g. is the gravitational 
constant, and p and p ' ,  a r e  the densities of, respectively, the continuous 
and the dispersed phase. Thus, in contrast to many of the classical prob- 
lems in fluid mechanics, the drag is given while the velocity of translation 
of the body i s  the unknown. 
feature; rather it is the fact that the shape of the drop cannot be specified - a pr ior i ,  but needs to be obtained a s  part of the overall solution. 

Of course,  this i s  not the main complicating 

The problem to be solved can, therefore, be stated as follows: One 
seeks a solution to the appropriate Navier-Stokes equation, in the region 
both inside and outside the drop, which leads to  finite velocities everywhere 
and which satisfies the boundary conditions: 

i) At infinity, ui + U6i3 

ii) On the surface of the drop: 

u.n. = 0, u. = u.' 

( T ~  - o!.) nj = y n i  8%/a\ 

1 1  1 1  a )  

b)  
1J 

( 3 )  

(4) 

where x. is a position vector with origin at the center of m a s s  of the drop, 
6. is a '  unit vector parallel to the gravitational acceleration, u. is the ve- 
lbgity vector, U is the unknown terminal drop velocity, n. is  the' unit outer 
normal to the surface of the drop, 0.. is the s t ress  tensob and y is  the inter- 
facial tension. 
Also, we shall limit our discussion to systems with clean interfaces; i. e. we 
shall not consider the effects of surface active agents which a r e  known to play 
an important role in some cases when the drop is small [ 1,2]. 

All primed symbols '' refer to quantities within the drop. 

In spite of the rather simplified nature of the problem a s  stated above, 
an exact solution cannot be obtained in general except through laborious 
time-consuming finite-difference numerical computations. 
therefore, to examine some special cases. 

It is instructive, 
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To this end, let us consider the case of a gas-bubble rising in a New- 
tonian liquid. Here p ' << p and p ' << p, with p being the viscosity. Hence, 
the independent parameters of the system reduce to  the following six: U, 5, 
g, p ,  p and 7, which can be combined into the three independent dimension- 
less groups 

R I apU/p ,  W 3 apU 2 / y ,  M = gp 4 3  / p y  

where R is  the familiar Reynolds number and W is the Weber number. 
should be noted that, of these groups, only M depends exclusively on the 
properties of the liquid medium, while R and W depend on both the size and 
the velocity of the bubble. In fact, since y and p do not vary greatly f rom 
one system to another, M is effectively proportional to p4. 

In some respects, in the case of rising bubbles, the use of R and W 

It 

is somewhat awkward at  times because, in contrast to  most of the classical 
problems in hydrodynamics, U and 5 a r e  not independent entities since, for 
a given bubble size, the r i se  velocity must adjust itself so a s  to maintain the 
proper balance between the buoyancy force and the drag acting on the bubble. 
Thus, U is seen to depend on 8 as  well as on the physical properties of the 
system. 

Particularly simple expressions for the r i se  velocity U exist when 
In the former case, the equivalent radius 5 is either very small or large. 

typically for 5 C 
of W, and inertia effects a r e  negligible because R << 1. 
creeping flow equations one obtains the well-known result, first derived by 
Hadamard and by Riabouchinsky [ 1,33. 

cm., the bubble is spherical, owing to the small value 
Thus, by solving the 

2 U = a gp/3p . (5) 

At the other extreme, i. e. when a typically exceeds 1 cm., the 
Reynolds number is large and the surface tension forces negligible. 
a s  f i rs t  shown by Davies and G. I. Taylor [l, 33, the bubble assumes the 
shape of a "spherical cap" and its r i se  velocity is given by 

Then, 

( 6 )  

The subject of spherical cap bubbles has recently been reviewed by Wegener 
and Parlange [4 J. As ehown by Haberman and Morton [5 J, among others, 
( 5 )  and ( 6 )  a r e  in very good agreement with experimental data provided that, 
a s  mentioned earlier,  the bubble surface is clean. 

u = I. 02 J ga . 

In contrast to the simple asymptotic expressions (5) and ( 6 ) ,  the U vs. - a curve in the intermediate regime is  somewhat more complicated and assumes 
one of two possible shapes depending on whether M is large o r  small. 
such representative curves a r e  shown in figure 1. 

- 3  

Two 

Large values of M (M > 10 ) typically correspond to  very viscous 
liquids. 
deform, the Reynolds number is still small enough for an analysis based on the 
creeping flow solution to apply. 

Consequently, when 2 becomes sufficiently large for the bubble to 

Thus, as  shown by T. D. Taylor and Acrivos 

. . .  

. 
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[6], an expression for the deformation of the bubble can be obtained, when 
both R and W a r e  small, by means of a perturbation solution of the Navier- 
Stokes equations. 
automatically satisfies the normal s t ress  balance in (4), the deformation here 
results f rom the effects of inertia forces; but since, as  is well known, the 
creeping flow solution does not lead to a uniformly valid approximation of 
the flow far  from the bubble, the analysis cannot proceed via a regular per- 
turbation. Rather it requires that the method of matched asymptotic expan- 
sions be employed for this purpose. The resulting expression for the bubble 
shape including the additional two terms recently obtained by Brignell [73 is  

Actually, since the appropriate creeping flow solution 

where P and P a r e  the appropriate Legendre polynomials and e is the 
azimuthHZ angle measured from the downstream direction. 
easily be seen from (7), the bubble f i rs t  deforms into an oblate spheroid 
and then, following a further increase in a, into a shape approaching that of 
a spherical cap. 
ly that the transition from a spherical bubble to a spherical cap is a gradual 
one and that the corresponding shape of the U vs. 5 curve for liquids with 
larger values of M is, typically, as shown in figure 1 for mineral oil. 
Hayashi and Matunobu [ 81 have experimentally verified the Taylor-Acrivos 
[6] expression for the deformation of drops as  well as  bubbles when R and W 
are small, while Wellek, Agrawal and Shelland [93 have reported that this 
expression seems to hold for substantially larger values of 5, and, there- 
fore, of R and W, than would be expected on the basis of the theory. 

small, i. e. less than approximately 10-10. 
indicative of low viscosity liquids and hence it is  quite possible that small 
(and, therefore, spherical) bubbles can rise fast enough for the Reynolds 
number to  be large. To a good approximation then, the vorticity is confined 
to a thin boundary-layer at the bubble surface plus in a narrow axisymmetric 
wake, and the flow outside this region is  effectively inviscid. Moreover, a s  
Levich [23 was the first to  recognize, the rate of mechanical energy dissipa- 
tion in the liquid can be determined, at sufficiently large R, f rom the irrota- 
tional flow alone, and, therefore, an expression for the drag can be obtained 
without a detailed analysis of the boundary-layer. 

3 Thus, a s  can 

In fact, i t  is a simple matter to  demonstrate experimental- 

A very different state of affairs is  encountered, however, when M is 
LOW values of M are ,  of course, 

Levich's result is 
2 

U = a gpl9p  , 

which is  identical to (5), the corresponding creeping flow expression, except 
for a numerical factor. By considering the dissipation in the boundary-layer 
and in the wake, Moore [ l o ]  corrected (8) for the effects of a finite Reynolds 
number and showed that, to a f i rs t  approximation 

(9 1 

The most remarkable thing about the corresponding U vs. 5 curve, such a r  
the one shown in figure 1 for turpentine, is the appearance of a local maximum 

-516 2 
U = [1 t 1.6 R - l f 2 +  O(R ) ]  . 

9P 
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in the rise velocity when E is still quite small. 
that this resulted from the presence of instabilities at the gas-liquid inter- 
face, which have been observed experimentally [ 111 and predicted theoret- 
ically [ 121 to  occur a t  values of W between 3 and 4. Moore [13 J has shown, 
however, that this instability is probably not the main cause for the existence 
of this velocity maximum, but rather the fact that beyond a certain radius 5 
the bubble rapidly begins to deform into an approximately oblate spheroidal 
shape, the drag of which increases with 5 faster than a3, the corresponding 
rate  of increase of the buoyancy force. 
by E l  Sawi [ 143 consists of an irrotational inviscid solution for the flow ex- 
ternal to the bubble approximately satisfying the normal s t ress  balance- at 
the gas-liquid interface, which, a s  seen in figure 1, is in excellent agreement 
with the experimental points in the region where the local maximum rise  ve- 
locity occurs. This theory also predicts the existence there of a maximum 
Weber number above which the symmetric shape is impossible. It is of in- 
terest to note that this maximum value of W, approximately equal to 1.6, is 
almost exactly the same as  that of the critical Weber number obtained by 
Hartunian and Sears [ 121 for the onset of instability. 

For  a while, it was believed 

Moore's [ 13 J analysis, later refined 

The discussion presented above has been primarily limited to bubbles. 
The case of a liquid drop rising in another fluid with which it is immiscible 
is not very different although, of course, the presence of viscous effects 
within the drop complicates both the analysis as  well a s  the interpretation 
of the experimental results. For  example, the extension of (9)  to drops of 
low but finite viscosity requires a complicated analysis of the motion within 
the discrete phase [15] which has not been extended, as  yet, to non-spherical 
systems. 
served in the caie  of bubbles. e. g. spherical drop8 deforming into prolate 
spheroids [8]. 

DROPS FREELY SUSPENDED IN A LINEAR SHEAR FIELD 

Also, drop shapes have been reported which have not been ob- 

Thus, the subject appears to be in need of further study. 

This case differs f rom that discussed earlier in that the drops a r e  
now neutrally buoyant, i. e. force-free and couple-free, in a linear shear 
field. Thus, relative to a set of axes that move with the center of the drop, 
we have, in lieu of (2), that: 

u. + eij xj +$  cijk aj 5 , 
1 

At infinity, 

where w .  and e.. denote, respectively, the vorticity and rate of strain tensor 
of the un'distur&bd shear flow. 

G. I. Taylor [16] was the f i rs t  to study this problem both theoretically 
and experimentally for the case of creeping flow. He showed that, for the 
simple shear flow 

u. 1 = Gx21& at infinity, (11) 

and for k 5 

ellipsoid with semi-axes a(1-D), a, a(l tD),  where 
IF Ga >> 1 and t p ' /p  = 0(1), the drop would deform into an 

I .  . .  
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D = 19 , h b  t 16 k- l  . 
Taylor showed moreover that, under these conditions. cy = n/4 where (y is 
the angle between the major axis of the ellipsoid and the 2-axis. He also 
considered the case of a very viscous drop, i. e. 
which he found that, again for the simple shear flow (11) 

>> 1 and k = 0(1), for 

and OL = - n 
2 .  

D = -  
4x 

In his analysis, Taylor solved the creeping flow equations for a 
spherical drop and then obtained (12) and (13) f rom the normal s t ress  com- 
ponent of (4). Thus, this case is ,  in at least one respect, simpler than the 
corresponding problem of the distortion of a rising drop discussed earlier,  
in that an expression for the deformation can be obtained here without the 
need to consider inertial effects. 

Cox [17] placed Taylor's theory on a more systematic basis. He ex- 
amined the general problem of a drop in both steady and unsteady Linear 
shear flow for a l l  circumstances in which the drop deformation is small 
and presented a scheme for extending the analysis to higher order in k'i or 

For the'simple shear flow (ll), Cox found that, at steady-state, 

1 1 
9 cy = f t z  tan- (19X/20k), (14) 5(191 t 16) D =  

which reduces to  (12) and (13) under the appropriate conditions. 

A number of very significant experimental studies have also appeared 
which have extended the range of Taylor's earlier measurements. Due to 
experimental limitations, a l l  these have been performed either in the simple 
shear flow (11)--which can easily be generated in a Couette device--or the 
hyperbolic flow 

of Taylor's four-roller apparatus. 
of Rumscheidt and Mason [ 18 3, who studied the deformation and breakup of 
liquid droplets, of Torea, Cox and Mason [ 19 3, who examined the influence 
of time effects, and of Grace [20] who conducted a thorough experimental 
investigation of the phenomena associated ith deformation and burst over 
the record-breaking range of X ' s  f rom 10-rto lo3. All these studies have 
yielded some extremely interesting results. First of all, they have con- 
firmed Taylor's and Cox's analyses for small  deformation; they have also 
shown that, under certain conditions, drops can deform, seemingly indefinitely, 
with an increase in the strength G of the shear rate and end up as  filaments, 
whereas, under another set of circumstances, they will deform only to a 
moderate extent and then burst. 
experimentally determined value of the parameter k'l required for burst is 

Of particular interest a r e  the experiments 

This is illustrated in figure 2, where the 
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plotted vs. 
depicts the corresponding value at breakup of .&/a with 
length of the drop. 

for both simple shear and hyperbolic flow, and in figure 3 which 
being the half- 

Knowledge of the conditions for breakup would be extremely useful 
in many practical situations. For  example, it would allow one to  estimate 
the rheological properties of an emulsion which a r e  known to be sensitive 
functions of the average size of the droplets comprising the discrete phase. 
Also, a s  shown by Grace [ Z O  J, the basic data regarding the behavior of 
single drops in shear fields can be used successfully to predict the disper- 
sion performance and the power requirements of a class of static mixers. 
In this context, it is undoubtedly useful to know that, a s  shown in figure 2, 
an  irrotational shear field is more efficient, for the purposes of mixing two 
immiscible viscous fluids, than a corresponding simple shear, and that, for 

> 4, it would be very difficult if not impossible to mix two fluids in a 
Couette device, no matter how large the strength of the impressed shear. 
Evidently then there is a pressing need for a theory which would explain and 
quantitatively predict the phenomenon of burst. 

Although such a general theory is not yet availa\ble, a promising 
start in this direction has recently been made by Barthes-Biesel and Acrivos 
[ Z l  J and by Buckmaster [22,23 J. The first authors succeeded, after much 
labor, in obtaining an  additional t e r m  O(k-2) in the solution of Cox [ 17 J and 
showed that this truncated series could model the experimental results of 
[18], [19 J and [ Z O J  often to  a surprising degree of accuracy. 
trated in figure 4 which shows, according to the analysis by [ Z l ] ,  that be- 
yond a certain value of k-l, no steady shape can exist for that particular 
set of cmditions (the upper branch of the theoretical curve was found to be 
unstable to  small  disturbances [ Z l ] ) .  Curves, similar to those of figure 4 
were also computed for a variety of flows and values of [ Z l ,  241, a l l  of 
which tend to suggest that the breakup of a droplet freely suspended in a 
shear field results not f rom an instability, but rather f rom the absence of a 
steady-state solution to the appropriate system of equations beyond a cer-  
tain critical value of k-'. 
course, in that it consists basically of a two-term expansion about a droplet 
whose shape is assumed to differ slightly f rom that of a sphere. Conse- 
quently, it cannot describe elongated drops and, indeed, its predictions have 
been found, at times, to be inaccurate and, on occasion, erroneous [ 21 3. 
Nevertheless, it is  believed that Barthh-Biesel  and Acrivos' theory correctly 
models the essential physical aspects of the phenomenon even though it is 
still in need of considerable improvement for the purpose of yielding relia- 
ble quantitative predictions. 

This is illus- 

The analysis of [ Z l  J is still rather incomplete, of 

In contrast to  [ Z l  J, Buckmaster's analysis concerns a slender drop- 
let, the shape of which he determined using the techniques of slender-body 
theory [22,23 1. Buckmaster's results a r e  therefore exact, in an asymp- 
totic sense, for very slender droplets, although unfortunately they a r e  
limited, at present, to the case of axisymmetric flows where comparison 
with experiments is  not possible a t  this time. Nevertheless, both the re- 
sults and the approach a r e  valuable and inteeesting. 

In his first paper[22 J, Buckmaster considered an inviscid bubble and 
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showed that its shape was given by 

where e is  the distance alone the axis of symmetry 

(16) 

f rom the center of the - 
bubble and n is an unknown integer. 
of solutions although he reasoned that the one corresponding to n = 1 was 
probably the most realistic. 
pressed the solution of the appropriate creeping flow equations in terms of 
an integral involving a distribution of singularities along the surface of the 
bubble, the strength of which he then determined through a numerical solu- 
tion of the appropriate integral equation while, simultaneously, adjusting the 
shape so a s  to satisfy the normal s t ress  balance. 
results a r e  shown in figure 5 and a r e  seen to conform to (16) with n = 1 even 
when the slenderness ratio y/4Gp.d is far  f rom small. 
increases of course the potential usefulness of slender-body theories when 
applied to such problems. 

Thus; Buckmaster obtained a family 

This was confirmed by Youngren [25] who ex- 

Youngren's numerical 

This observation 

Buckmaster [ 231 also considered the corresponding problem for a 
drop having a small but finite viscosity and showed that 

where 

Evidently, since a solution exists only if K 2 8, the condition K = 8 yields a 
criterion for burst which is  qualitatively similar to that of [21 J in the sense 
that breakup has been associated with the absence of a steady state solution 
when Gpa/y  exceeds a certain critical value. 

This then appears to be the state of affairs regarding this interesting 
Clearly, a more general and comprehensive theory and important problem. 

would be desirable, and it is hoped that the analysis which, up to now, appears 
to  have been limited to creeping flows, could also be extended to cases of 
finite or even large shear Reynolds numbers, GpaZ/p.  Experiments at 
higher Reynolds numbers would also be welcome. 
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PRESSURE WAVES IN BUBBLY LIQUIDS 

L. van Wijngaarden 
California Insti tute of Technology 

* 

ABSTRAfl 
A bubbly liquid is a compressible fluid and therefore any compression 
wave of f in i t e  amplitude w i l l  tend to  steepen. There are various 
mechanisms, which oppose this. Discussed are three of these: 1) D i s -  
persion, caused by volume oscillations of the bubbles; 2)Dissipation 
of thermal and viscous nature; 3) Relaxation caused by relative motion 
between bubbles and liquid. Depending on which of these dominate, the 
structure of the shock wave takes a different form. Examples, taken 
from systematic experiments are shuwn. A brief account is given of the 
theoretical considerations, which enable t o  explain the observed shodc 
wave fonns. 
In this t a l k  I would l i k e  t o  review some of the features of pressure 
waves in bubbly liquids, as they appeared during research by Dr.L.Noordzij 
and myself in  recent years. Details may be found in  the references cited 
a t  the end. For convenience we r e s t r i c t  ourselves here to  spherical bubbles 
with radius R, locally, and initial radius R .The fluid phase has constant 
density p f ,  the gas in  the bubbles however i g  compressible. The mixture 
has, when the number density of the bubbles is  n, a density 

P Pf  (1-6) , 
where 6 is the concentration of the gas by volune, 

When a pressure wave passes through the mixture the bubbles execute 
volume oscillations. Free volume oscillations have, under adiabatic 
circumstances, the frequency 

where y is the rat io  between specific heats of the gas. A t  frequencies 
much lower than %, the pressure inside the bubbles equals the local 
pressure p i n  the fluid and when in addition the bubbles move locally 
whith the fluid,  the velocity of propagation of sound waves is, for 
small 6 ,  given by 

*permanent d re s s  : 
Technische Hogeschool 'hente, Enschede, The Netherlands. 
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For very small bubbles, radius %lO-'rn, the changes in pressure are 
isothermal , and c is y-f times the value of (4). 
A t  frequencies c&arable with 
equals the pressure in the bubbas due t o  the inertia of the fluid 
accelerated or decelerated in radial direction as the bubbles execute 
volume oscillations. As a result dispersion occurs and the waves travel 
with a speed less than co, the difference with co becoming larger when 
the frequency approaches . 
Damping of these pressure2aves is provided by several dissipative 
effects, the main one being thermal conduction fran the gas into the 
fluid. For waves of f in i te  amplitude the above mentioned items provide 
interesting p h e n m a .  Just as in  ordinary gas dynamics compression 
waves are steepened because in a canpressed part  of the wave the speed 
of sound is larger than in an expanded part. Dispersion tends t o  spread 
the wave because high wave number parts of the wave travel slower than 

No shock waves are possible without the additional help of some dissi- 
pation. Includin this by a logarithmic decremenz 6 of linear waves, we 
find (see e.g. Pf) for the pressure disturbance p=(p-po)/po in a wave 
that travels in x-direction, 

the pressure in the gas no longer 

low wave nunber parts. The two opposing effects may balance in waves 
pemantent form, analogous t o  cnoidal waves on water of f in i te  

I t  is understood that the wave is of moderate amplitude and (5) con- 
s t i tu tes  an approximation of one order beyond the linear (acoustic) 
approximation. In equation (5) the third tern on the l e f t  hand side re- 
presents the nonlinear steepening, the fourth and f i f t h  t e rn  represent 
dispersion and dissipation, respectively. Equation (5) has stationary 
solutions in  the form of an undular bore, that  is a steep rise of the 
pressure in front followed by oscillations about the equilibrium pressure 
a t  the backside. These 
periments reported in 

e of pressure waves were found indeed in ex- 
An example is shown in Figure 1. 

Figure 1. Shock wave of 
undular bore 
type (A shock) 
P1/Po'l 79 # 

8,=3.21% 9 

-3 Ro=l .33x10 m, 
U=66m/s, dA=3.3x10 -2 m 
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These experiments were carried out in a shock tube of about 1 meter 
length with a i r  bubbles of about 1 mm radius in  a aqueous solution of 
glycerine. The thichess  of the wave, for further reference denoted 
w i t h  dA, follows fran balancing the nonlinear and the dispersion term 
in (5) and is  

dA 

When po is the pressure ir. front and p1 the pressure at  the backside 
of the wave, we can also calculate the speed of propagation of this 
shock wave. The result  is 

1 P,/P0'1 u2 P - 
T Y  1 '  

l-@o/P1) 7 
for  adiabatic bubbles, and 

v2 -13 , 
Po 7 = y  

=0 

(7) 

mder isothermal conditions. 
Figure 2 ,  taken from 01, shows good agreement with (7), in accordance 
with the e m c t a t i m  that a t  a typical frequencyU/d, the penetration 

n depth of heat is small with respect t o  Ro. 

. 
Figure 2:Speed 
of A shocks. 
0:experiments. 
-Theory ,for 
adiabatic and 
isothermal 
bubbles res- 
pectively. 

I 
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After the experiments of [37 were carried out, we bui l t  a longer shock 
tube, as depicted in Figure 3 and observed that shock waves, i n i t i a l ly  
(in part  A) of the form of Figure 4a,just described, took a different 
form lower in the tubeceither of the form B shown in Figure 4b or of 
the form C in Figure 4 . 

A 

s e a l  a i r  r eg ion  

t o  vacuum pump 

a p r e r r u r e  transducer 

e e c t i o n  for photographi?;  ’ 

the bubble8 

a i r  supp ly  

Figure 3: Fxperimental setup. 

Figure 4: This Figure 
i l lustrates  
the different 
shock stmc- 
tures obser- 
ved in the 
laboratory. 

a) A shock. 
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b) B shock. 

, 

c) C shock. 
I 

\ 

The remainder of this talk is on this gradual chan e of A shocks into B 
or C shocks and is a very condensed version of c4f which  is shortly to 
appear. The clue to the understanding of the change in shock structure 
is provided by looking at the relative motion of the bubbles with respect 
to the fluid. When a fluid containing bubbles is instantaneously accele- 
rated to a velocity u, the bubbles acquire a velocity 3u, approximately. 
In the absence of viscosity the bubbles continue to move at this velocity. 
When the fluid is viscous the bubbles are gradually slowed dawn to the 
fluid velocity. The time this process takes depends on the magnitude of 
the viscous force and on the virtual mass of the bubbles. For spherical 
bubbles the virtual mass is f p  
Levich model for the flow a r d d  the bubble, the viscous resistance is 
12wR times the relative velocity ; IJ is the dynamic viscosity of the 
fluid. 

times the bubble volume and, adapting the 

, 

- . . ... . .. __. 
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The relaxation time T then is 

For defonned bubbles both the virtual mass and the resistance increase 
severeIy with the deformation but, surprising1 nmgh, T remains vir-  
tually unchanged for not too large d e f o m t i m f ~ f . ~ e n  a pressure wave 
in the form of a step function enters the mixture a t  t=o,the mixture 
reacts for times t < < T  as if the fluid were inviscid. The bubbles are 
free t o  move relative to  the fluid and the velocity of sound is not as 
given by (4) but is 

(10) 
2 cf = ct (1+28,) . 

The sound velocities co 2 and c 2 may be canpared with the equilibrium and 
frozen sound speeds i n  chemidlly reacting gas flaws. In part A of the 
shock tube of Figure 3 viscosity does not yet resist relative motion and 
the shock is of the undular bore type, however with cf in stead of co. 
The expression for the speed of the shock wave is 

but the effect of 8 , (as canpared with ( 7 ) ) ,  is too small t o  be 
measurable at  value8 of 6 of a few percent. 
For times t canparable wieh T or, in terms of distance, a t  distances 
along the tube of order c T viscous forces tending t o  decrease the 
relative velocity become &rtmt. q e y  h y e  a diffusive action on the 
wave with a diffusion coefficient T ( C ~  - c ). This diffusion resists 
nonlinear steepening and may, a t  law eno8gh pressure ratios,  even 
completely balance the nonlinear steepening. When this  happens, the pro- 
f i l e  of the wave is smooth. The wavelets in the front of the wave can a t  
maximum travel with the speed c The speed of the wave is given by ( 7 ) ,  
whence by expanding (7) for smfi values of p /p -1, we find for the 
threshold of these smooth waves l o  

Indeed for values of p /p satisfying (12), canpletely smooth waves, 
C waves, were fomd in’th8 lower section of the shock tube. An example 
is shown in Figure 5. The th i chess  of these waves is much larger than 
dA. We find 

d =UT , 
C 
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Figure 5. An example of a C shock. p /p =1.07, 8,=4.17%, Ro-1.15x10-3m, 
U=65 m/s, d =2,1 m, 1+4B0y)y+?= 1.1. 

C 

which is i n  our experiments, w i t h  U= 10 2 m/s and ~=lO-z*, of the order of 
magnitude of 1 m, whereas d is typically of orderb10 m. There remain to  
consider the type of shock baves s h m  in Figure 4 which we denote with 
B shocks. They can be explained as follaws: when the distance along the 
tube is comparable with or  larger than UT, diffusion is active but no 
smooth profile is possible when p /p exceeds the value given in  (12). 
Therefore the shock has a thin frdt ,Oof order dA, of the A type. A t  t h i s  
front the pressure rises to  a value i n  between p and p. Ne denote this 
pressure with fl The remainder of the pressure dcrease takes place over 
a distance of order UT over which nonlinear steepening is, as in  C shocks, 
in  balance with diffusion by relaxation. The value of $is fougd by obser- 
ving that the thin front shock must obey equation (11) , w i t h  p in place 
of p , whereas the whole wave obeys equation (7). EQuating the righthand 
side!! of these equations, with p i n  stead of p1 in  (11) , gives for the 

1 the expression - 

1-vz (Po/P,) 
c02 

Qualitatively the form of the B shocks may therefore be interpreted as a 
thin front governed by the balance between nonlinear steepening and dis- 
persion follawed by a much thicker region where steepening is resisted by 
relaxat ion. 
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In figure 6 an example of a B shock is given. Quantitatively a check on 
the theory is possible by comparing the experimental data for F with the 
theoretical result (1 5) : This is done in Figure 7. 

Figure 6. Pressure re- 
cording of a 
B shock. 
P1/Po= 1.81, 
6,' 1.17%, 

-3 Ro= 1.07~10 m, 
U=108 d s ,  
dA= 4.3~10-~m, 
dB00.54 m 
Fexp=0.61. 

Figure 7. 'fie quantity F (equation 14) as a function of pl/po with 8, 
as parameter. - - - - - - -  theory; o exp, 6 = 0.87 x '?(I2 
The solid line gives for compafison the values for F when 
thermal relaxation were dominant. 

- * - * - * - .  " ; a exp, eo= 3.1 x 10 

! 
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The broken lines correspond t o  constant values of B .The solid l ine in- 
dicates the behaviour of F when relaxation of t hend l  nature were the 
daninant process. In that case the equilibriun and frozen speeds are 
c y-4 and co. Smooth profiles would occur be lw  the pressure rat io  
0 

Y *  
P1 
PO 
- =  

Figure 7 shws that  thermal relaxation cannot be mled out in  our ex- 
periments, but the fact  that  we found no C shocks in the range of pressure 
ratios between y and 1+4y$ / l+y  indicates the predominance of relaxation 
associated w i t h  relative fhotion. 

1 Wijngaarden, L van 
2 id. Ann.Rev.Fluid Mech. 4,369,1972 

3 id. Progr.Heat and Mass Transfer 6,637,1972 
4 Noordzij L, Wijngaarden L,van 

J.Fluid Mech. 33,465,1968 

J.Fluid Mech. t o  appear. 

I 

i 
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MODELS OF SPHERICAL-CAP BUBBLES 

R. Collins 

Department of Mechanical Engineering, University College London. 

INTRODUCTION 

From t h e  close correspondence between t h e i r  theory and experiments 
which had re la ted  bubble veloci ty  with apparent radius  of curvature,  Davies 
& Taylor ( see  Ref. 1 & 2)  concluded t h a t  t h e  flow near t h e  f ront  of a 
r e a l  spherical-cap bubble must be very close indeed t o  t h e  i r r o t a t i o n a l  flow 
near t h e  f ront  of a complete sphere of t h e  same curvature,as they had assumed 
i n  t h e i r  theory. They expressed some surpr i se  a t  t h i s  r e s u l t  of t h e i r  work. 
In  f a c t  t h e  equation derived from t h e i r  assumption about t h e  flow agreed 
b e t t e r  with t h e  experimental measurements of bubble veloci ty  than did an 
equation of similar form derived from measurements of t h e  pressure d i s t r i b u t -  
ion on a s o l i d  model of the  bubble cap, which had been obtained i n  a wind 
tunnel at  high Reynolds number. Although t h e i r  assumption works so well,  
it does not give t h e  required constancy of pressure on t h e  bubble cap except 
i n  t h e  immediate v i c i n i t y  of t h e  stagnation point,where t h e  s t a t i c  pressure 
i s  constant t o  a first approximation, t h a t  is as far as terms of order Q2, 
8 being an angular coordinate with or ig in  s i tua ted  a t  t h e  centre  of curvature 
of t h e  cap. Some t i m e  l a t e r ,  Rippin (Ref. 3 i% 4) invest igated t h e  p o s s i b i l i t y  
of improving t h e  pressure d is t r ibu t ion  and he followed Moore's suggestion 
(Ref.5) f o r  an inviscid model of t h e  flow ra ther  l i k e  a Helmholtz free- 
streamline flow i n  which an i n f i n i t e  open wake of stagnant f l u i d  followed 
t h e  bubble. 
constant pressure over t h e  bubble cap, but agreement with experiment, as far 
as t h e  relat ionship between bubble ve loc i ty  and curvature w a s  concerned, w a s  
e s s e n t i a l l y  destroyed s ince the  ve loc i t ies  predicted were almost 30% too 
high. This curious s i t u a t i o n  i n  which a model s a t i s f y i n g  t h e  constant 
pressure requirement only approximately w a s  apparently superior t o  a model 
i n  which t h a t  condition was approached as closely as pract icable  prompted 
t h e  work reported i n  Ref. 6 .  
small perturbation t o  t h e  flow assumed by Davies & Taylor so as t o  improve 
t h e  pressure d is t r ibu t ion .  
implied i n  adopting t h e  i n f i n i t e  open-wake model. 
small perturbation t h a t  t h e  pressure condition could be s a t i s f i e d  as far as 
terms of order e4 near t o  t h e  stagnation point thus producing a second 
approximation, and t h e  s l i g h t  adjustment i n  veloci ty  given by t h e  theory 
gave a r e s u l t  i n  excel lent  agreement with experiment. It w a s  shown a l s o  
t h a t  t h e  re la t ionship  between bubble veloci ty  and t h e  radius of curvature 
at its stagnation point w a s  uniquely defined by t h e  accelerat ion of l i q u i d  
along the  bubble surface at t h e  stagnation point and Batchelor (Ref. 7 )  
has pointed out t h a t ,  at the  high Reynolds numbers relevant t o  t h i s  problem, 
t h e  r e s u l t  i s  exact. 

The numerical solution which he found did give a v i r t u a l l y  

The procedure adopted there  w a s  t o  apply a 

This contrasts  with t h e  gross perturbation 
It was found with t h i s  

In work unknown t o  t h e  author at t h e  time of wri t ing Ref. 6 ,  
Temperley & Chambers (Ref. 8 )  had a l s o  t r i e d  t o  improve t h e  pressure 
d is t r ibu t ion  given by Davies & Taylor's approach by incorporating a sink 
term i n t o  t h e i r  veloci ty  poten t ia l  and a l s o  by considering a source alone, 
but  although they were ab le  t o  s a t i s f y  t h e  constant pressure condition t o  a 
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second approximation with t h e  first of these approaches, they acknowledged 
t h a t  t h e  relat ionship between veloci ty  and curvature which resu l ted  from 
t h e i r  work was i n  poorer agreement with experiment than was Davies & 
Taylor's r e s u l t .  More recent ly ,  Harper (Ref. 9)  has shown t h a t  an alterna- 
t i v e  closed model can also produce a second approximation which agrees 
with experiment but  he s a w  t h e  f a c t  t h a t  h i s  model required a f la t tened  
sphere while Ref. 6 produced an elongated sphere as a deficiency of t h i s  
approach. He subsequently concluded t h a t  i n f i n i t e ,  open, stagnant-wake 
models did give useful approximations t o  t h e  flow f i e l d  over t h e  f ront  
part of t h e  bubble and ,in a similar vein ,Wegener & Parlange (Ref. 10) 
s t a t e d  t h a t  r e s u l t s  from such models agreed f a i r l y  w e l l  with experiments 
when t h e  wake is turbulent .  The purpose of t h i s  paper i s  t o  consider 
these views i n  t h e  l i g h t  of evidence avai lable .  

COMPARISON BETWEEN THEORY AND EXPERIMENT 

Using a system of spherical  polar  coordinates whose or ig in  is  located 
at t h e  centre  of  curvature of t h e  bubble boundary a t  i t s  stagnation point ,  S , 
t h e  velocity,U,of a l a r g e  gas bubble moving with high 
and Weber numbers has been shown ( R e f .  6) t o  be given by t h e  equation 

values of Reynolds 

U/(ga)$ = l /(dh/dO)s.  

Here g i s  t h e  accelerat ion due t o  gravi ty  and a the  radius  of curvature 
of t h e  bubble boundary a t  S, while h(B) describes t h e  var ia t ion  i n  t h e  
magnitude of t h e  l i q u i d  veloci ty  on t h e  bubble boundary through t h e  re la t ion  
q = Uh(8). 
i s  constant.  
object ive i s  t o  formulate a model whose geometry provides a proper descr ipt ion 
of t h e  flow over t h e  bubble cap so t h a t  t h e  quantity 
accurately determined. 
evaluated as.)  If a model produces an incorrect value, it may be inferred 
t h a t  it gives an inadequate descr ipt ion of t h e  flow i n  t h a t  region. 
standard f o r  comparison here i s  of course t h e  experimental evidence which 
is expressed i n  terms of an apparent radius of curvature, E, ra ther  than a. 
A re la t ionship  between a and a i s  readi ly  determined f o r  any mogel 
(Ref. 6 ,  9)  and, as t h e  name f o r  t h i s  c lass  of bubbles suggests,a/a does not 
d i f f e r  great ly  from unity.  
Taylor, who measured bubble ve loc i t ies  i n  nitrobenzene, and of Rosenberg 
who used water (Ref. ll), show t h a t  

As ant ic ipated on dimensional grounds, t h e  bubble Froude number 
In attempting t o  pred ic t  t h i s  Froude number the'primary 

may be 
(The s u f f i x  indicates  t h a t  t h e  der ivat ive i s  t o  be 

The 

The combined experimentelresults of Davies & 

The t a b l e  overleaf shows values of t h i s  Froude number given by t h e  various 
models previously described. 
percentage departure from t h e  experimental value i n  equation ( 2 ) .  What seems 
apparent from t h i s  t a b l e  is t h a t  t h e r e  i s  very l i t t l e  evidence t o  support 
t h e  contentions t h a t  open, i n f i n i t e  wake models provide useful approximations 
t o  t h e  flow over t h e  f r o n t  of t h e  bubble or  t h a t  they give r e s u l t s  which 
agree f a i r l y  well with experiment. 

The column labe l led  "Difference" shows t h e  I 
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Theoretical models 

Dates - Authors - 
Davies 8 '44s 
Taylor '50 

'45 Temperley 
& Chambers 

Rippin '59 
Collins '66 
Harper '72 

V/ ( Difference Geometry 

0.666 2.5% sphere 

0.54 17% 
0.82 26% open, i n f i n i t e  wake 
0.84 29% open, i n f in i t e  wake 
0.652 0.3% perturbed sphere 
0.643 1% oblate  spheroid 

approximate cardioid 

Harper emphasised the superf ic ia l  differences between the perturbed 
sphere used i n  Ref. 6 and h i s  own oblate spheroid Further consideration 
of these two shapes does reveal,  however, t ha t  they have a more important 
similar i ty .  Two influences on the  flow i n  the v ic in i ty  of the  stagnation 
point S may be ident i f ied.  The first is  the e f fec t  of the  gross features  
of the  complete flow at tha t  point, that is whether t he  boundary shape 
employed i s  open or closed, the  second is the  e f fec t  of the  loca l  changes 
in  curvature i n  the  boundary. 
i n  both cases i n  order t o  change the  curvature, for constant curvature 
has been seen not t o  produce a constant pressure. 
of the  radius of curvature,w, i n  the  v ic in i ty  of the  stagnation point i s  
evaluated for both these second approximations then it i s  found t ha t  f o r  
the perturbed sphere 

Clearly, the  modified shapes are introduced 

If the  loca l  dis t r ibut ion 

........ (3) w = a ( l  - o.g4e2 1, 

while for Harper's oblate  spheroid 

w = a ( l  - 0.5e2 ........ 1, 

where a is  again the  radius of curvature at  S. Thus, i n  addition t o  
both models being closed, both show tha t  i n  order t o  produce a f l a t t e r  
pressure dis t r ibut ion the radius of curvature of the  boundary should 
decrease along the bubble surface moving away from the  stagnation point. 
It may be observed tha t  the only known exact solution t o  the  two-dimensional 
form of t h i s  free-boundary problem which satisfies the  constant pressure 
requirement a t  all points on a cycloid also shows the  same dependence of 
w on 8 
close agreement with experiment, it i s  concluded tha t  the  flow near the  front  
of spherical-cap bubbles must be very close t o  the i r ro ta t iona l  flow near 

(Ref. 12) .  Following Davies & Taylor's interpretat ion of t he i r  own 
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t h e  f ront  of an approximately spherical  closed body whose radius 
of curvature i n  t h e  region of t h e  stagnation point var ies  as 1 - k02. 
It is  s t ressed here t h a t  t h i s  conclusion does not say t h a t  t h e  r e a l  flow 
is i r r o t a t i o n a l  everywhere outside t h e  closed boundary as some c r i t i c s  
of t h i s  approach have implied. We t u r n  now t o  t h e  evidence concerning 
t h e  gross fea tures  of t h e  flow pat terns  associated with spherical-cap 
bubbles i n  order t o  see whether t h i s  can explain why closed wake models a r e  
so successful.  

F’LOW VISUALIZATION EXPERIMENTS 

Spherical-cap bubbles a r e  conventionally c l a s s i f i e d  as those 
bubbles which r i s e  with v e l o c i t i e s  independent of t h e  propert ies  of t h e  
l i q u i d s  i n  which they a r e  blown (Ref. 11,13). Habeman & Morton (Ref. 13) 
re la ted  bubble veloci ty  with t h e  equivalent spherical  radius ,  re, through 
t h e  equation 

u = 1.02 (gre)  2 , ( 5 )  

and they a l s o  showed tha t  t h e  parameter which determines t h e  attainment of 
t h e  spherical-cap c l a s s  i n  a l i q u i d  of density,  p,  and surface tension, 0 ,  

is t h e  Weber number 

2 We = p u  2re/o . 

In  Haberman & Morton’s wordsthis should exceed ”about 20”, t h e  lack of 
precision a r i s i n g  because t h e r e  is  no abrupt t r a n s i t i o n  t o  spherical-cap 
behaviour. In  f a c t  a more s t r ingent  assessment of f igure  21 i n  Haberman 
& Morton‘s paper indicates  t h a t  complete independence of l i q u i d  propert ies  
would imply a somewhat higher value, but t h e i r  value w i l l  be used f o r  
t h e  moment recognislng t h a t  it is opt imist ical ly  low. Combination of these 
r e s u l t s  show that i n  order t o  form a spherical-cap bubble i n  a given l i q u i d  
t h e  minimum volume of gas required i s  

In  t h e  t a b l e  below t h e  values of V 
water and nitrobenzene, a r e  compar8d with t h e  volumes of gas ac tua l ly  
employed by various other invest igators  (Ref. 2, 11, 14 ,  15, 1 6 )  t o  generate 
what they regarded as spherical-cap bubbles i n  these l iqu ids .  
observed that i n  all invest igat ions except W o r t h y ’ s ,  t h e  volumes 
employed exceeded t h e  minimum required. 

appropriate t o  two l i q u i d s  of i n t e r e s t ,  

It m a y  be 

I 
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Minimum Volumes V 
0 

! 

1 
, -  

I 

I 

! 

Liquid v (ml) -0 - 

Nitrobenzene 0.9 

Water 2.5 

Volumes Ehployed (mll Authors 

Davies & Taylor 1.48 t o  33.8 

4.4 t o  200 Davies & Taylor 

4.8 t o  125 Rosenberg 
> 7.2 Slaughter 

4.5 t o  40 Davenport e t  al I 1.5 and 2.5 Maxwarthy 

Maxvorthyts 1.5 ml bubble is cer tainly too s m a l l  and the  ambiguous s ta tus  
of the  2.5 ml bubble may be resolved by reference t o  other investigators '  
c r i t e r i a  which serve t o  confirm tha t  Haberman & Morton's c r i te r ion  is set 
too low. 
was required i n  water but he also s ta ted  tha t  fo r  t rans i t ion  t o  spherical- 
cap form t o  be complete, a minimum of 4.2 m l  was necessary, and i n  those 
experiments where he actually measured cap c w a t u r e  he used values i n  
excess of 4.8 m l .  Davenport, Richardson & Bradshaw ( R e f .  15)  quoted a 
minhum.of 4.5 ml while Slaughter ( R e f .  1 4 )  placed the end of the preceding 
el l ipsoidal  c lass  of bubbles a t  5.6 ml and found agreement with equation 
( 5 )  a t  volumes above 7.2 m l .  
volumes between 1 . 5  m l  and 5.6 ml rocked regularly from side t o  side and he 
regarded them as fall ing i n  a t rans i t iona l  regime. Similarly, Rosenberg 
described bubbles whose volumes ranged from 0.7 m l  and 2.9 ml as i n  
t rans i t ion  with i r regular  shapes which fluctuated continuously. 
finding tha t  both a 1.5 ml and 2.5 m l  bubble exhibit  a turbulent 
amorphous wake stretching fax downstream is en t i re ly  consistent with these 
statements for the  rocking motion i s  most l i ke ly  t o  be associated with 
periodicity i n  the  wake. It i s  c lear ,  however, that since the  bubbles 
employed were not la rge  enough t o  f a l l  into tha t  c lass ,  IYaxworthy's evidence 
i s  inadmissible i n  a discussion of spherical-cap bubbles. The reviews by 
Harper ( R e f .  9) and Wegener & Parlange (Ref. 10) have, however, quoted it 
without cr i t ic ism.  
it i s  not necessary t o  perform additional experiments t o  demonstrate t h i s  
since it is  already evident from Davies & Taylor's photographs and from t h e i r  
calculations of energy dissipation (Ref. 1 & 2).  
argued (Ref. 7 )  t ha t  the f ac t  t ha t  t h e  veloci ty  of a spherical-cap bubble 
is independent of l iquid properties implies t ha t  the energy diss ipat ion process 
i n  the  wake must be turbulent. The question t o  be decided, however, is whether 
there i s  a s t ructure  t o  the  flow i n  the  wake on a scale larger  than the  scale 
of the  turbulence. 

For example, Rosenberg concluded tha t  a minimum volume of 2.85 ml 

Slaughter a lso found t ha t  bubbles with 

Maxworthy's 

A s  far as the turbulent nature of the  wake is  concerned, 

Batchelor has a l s o  
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Indirect  evidence of s t ructure  in  the wake of spherical-cap 
bubbles already existed before the  flow visualization experiments reported 
here were performed. -Davies & Taylor's photographs had shown a region 
of turbulence d i rec t ly  behind a spherical-cap bubble i n  nitrobenzene, 
'two-dimensional' versions of these bubbles formed between plane 
para l le l  plates  exhibited a double vortex immediately behind the bubble 
(Ref. 6 ) ,  and Temperley & Chambers (Ref. 8)  recorded tha t  t he i r  experiments 
i n  water agreed with Davies & Taylor's because they had observed clouds 
of small bubbles following each large one. The bubble volumes used i n  the  
experiments with water presently reported ranged from approximately 40 ml 

I t o  90 ml so as t o  ensure tha t  the bubbles were unequivocally of the 
spherical-cap class .  These observations were noted in  1966 (Ref. 6 ) ,  
they were reported informally a t  a Euromech Colloquium in  1968 (Ref. 17)  
and one of the  s t i l l  photographs was published by Batchelor i n  1967 (Ref. 7 ) .  
In Wegener & Parlange's review a r t i c l e  which was par t icular ly  concerned 
with visualization of wakes, t h i s  evidence was not considered. 

The tank and method of bubble generation have been described 
elsewhere (Ref. 18). In  some experiments ,small s a t e l l i t e  bubbles which 
occurred naturally during the generation process were used for  flow 
visualization as in Temperley & Chambers' experiments. In others, tablets 
of a proprietary soluble asp i r in  ("Aspro") were used t o  provide white t racer  
par t ic les .  
or column above the bubble generator, or they were allowed t o  form a cloud 
of material j u s t  above the  point of generation. 
t h i s  material as a t racer  was tha t  a l i t t l e  time a f t e r  the passage of one 
bubble the par t ic les  had dissolvcdthus leaving the  tank c lear  for  the 
next experiment. Dispersal of insoluble sol id  material o r  diffusion of 
dye between bubble and tank wall, i n  contrast ,  tends t o  obscure the de t a i l  
which of in te res t .  

These were e i ther  introduced into the  bubble path i n  a plane 

The advantage of using 

The flow pattern seen naturally depends on the  frame of reference 
of the observer. Cine f i l m  of the  motion (Ref. 19, shown during presentation 
and available on loan on request)  taken with camera fixed reveals the presence 
of a toroidal  vortex behind the bubble accompanying a region whose boundary 
i s  roughly the  spherical surface which continues the  bubble cap. 
s t i l l  photographs t h i s  feature  may be inferred using short time-exposures 
while panning the  camera with the  bubble as i n  the example i n  figure 1. 
t h i s  bubble, whose volume i s  approximately 40 ml, a r e  some secondary bubbles 
contained i n  a cloud of t racer  material which has been transported upwards 
from the  region ju s t  above the  generator where it had been introduced. Some 
t racer  material was introduced a l so  in to  the  flow outside the  cap/vortex 
boundary i n  t h i s  case. 
na tu re  of the flow pattern although they require a l i t t l e  more interpretat ion 
because the  bubble 
thus does not appear c lear ly  on the  pr int .  

With 

Behind 

Photographs obtained with camera fixed confirm the  

moves past the  camera during the  time-exposure and 

In  f igure 2, the  br ightest  patch t o  the  upper l e f t  of centre is due 
t o  l i gh t  ref lect ion from the left-hand s ide of the  bubble which,in t h i s  
instance also,had a volume of approximately 40 m l .  
below and t o  the  r ight  of t h i s  patch a re  from t racer  par t ic les  i n  the closed 
region of the wake and the f ac t  t ha t  the  ver t ica l  dimensions of patch and 
streaks a re  of the same order implies that they 

The streaks 

move together through the  
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I 

l iquid.  
case and the  flow pat tern observed there  bears a s t r ik ing  resemblance t o  
that of the  i r ro ta t iona l  dipole which is  shown on the  right-hand s ide of 
f igure 3. 
t o  be expected from the  motion of a sphere i n  an inviscid l iqu id ,  but the  
r e d  l iqu id  of course has viscosi ty  and the  r ea l  flow cannot be i r ro ta t iona l .  
Tie approximately spherical  surface presented by the  bubble cap and the  primary 
closed part of the  wake i s  the  source of vor t i c i ty  i n  these flows (which 
i n  figures 1 & 2 have Reynolds numbers of 0(104)), so t ha t  the  interpretat ion 
of the  sea l  pat tern of figure 2 i s  tha t  it closely resembles the pat tern 
which one would expect t o  be produced by the movement of a sphere on which 
boundary layer  separation was absent o r  delayed un t i l  close t o  the  rear  
stagnation point. In  f igure 2, a band of turbulence is discernable behind 
the  closed region. 
confluence of the  boundary layer at the  rear  stagnation point of the  
primary closed par t .  

Tracer par t ic les  were also introduced outside t h i s  region i n  t h i s  

An i r ro ta t iona l  dipole gives the  instantaneous streamline pat tern 

This Secondary wake i s  taken t o  be produced by the  

Figure 4 shows the model of wake s t ructure  which emerged from these 
experiments (Ref. 19 ,20 ; the  boundary laver  thickness on the  car, i s  
exaggerated i n  t h i s  f igure) .  It i s  unlike tha t  envisaged i n  Rippin's work 
where the boundary1a;yerwas taken t o  separate from the  bubble r i m  t o  produce 
an in f in i t e ly  long open stagnant wake of l iqu id  which moved with the  bubble. 
The instantaneous streamline pattern for  such a model is sketched on the  
left-hand s ide of f igure 3, but since t h i s  pat tern has not been observed, 
it is concluded that the  model does not provide an acceptable description 
of the  real flow. 
fioucknumber a s  shown i n  the  ea r l i e r  table. 
provides an explanation of the  success of closed models fo r  the system of 
bubble and primary wake does of fe r  an approximately spherical  boundary t o  the  
flow. 

This i s  why it is  unable t o  produce an accurate value for  
By the  same token, f igure 4 

On sol id  spheres the pressure dis t r ibut ion over the forward region 
i s  known t o  be similar t o  t h a t  given by i r ro ta t iona l  flow theory even in  
the  condition when the boundary layer i s  laminar and separates before the  
maximum transverse dimension is reached. 
a re  l e s s  prone t o  separate i n  adverse pressure gradients than  t h e i r  counter- 
parts on r ig id  surfaces (Ref. 7 ) ,  so t ha t  i n  the bubble problem where the  
boundary layer  has t h i s  different  character and does not appear t o  separate 
from the surface of the  primary wake, correspondence between i r ro ta t iona l  
flow theory and the  flow over the forward part of the  bubble i s  l i ke ly  t o  
be excellent.  
thus have a rationale.  
first approximation t o  the flow shown in  f igure 4 i s  the  i r ro ta t iona l  flow 
past the closed boundary. 
one t o  expect that flow t o  provide a very good description of the  r ea l  flow 
i n  theregion of prime in te res t , tha t  is near t o  the front  stagnation point, 
but leads a l s o  t o  the recognition tha t  it w i l l  be inadequate t o  describe 
the de ta i l s  of the r ea l  flow over the rear  par t  where the  boundary layer  
thickens i n  the adverse pressure gradient. 
misconception which w a s  raised in  Maxworthy's paper and i s  echoed by Wegener 
and Parlange it is  stressed again tha t  use of a closed model for  the 
flow over the  cap does not imply E. bel ief  t ha t  the  real flow is i r ro ta t iona l  
everywhere outside the closed boundary. 

Boundary layers  on f r ee  surfaces 

Closed models of the  turbulent wake of spherical-cap bubbles 
As with  other boundary layer approaches, the  logical  

An understanding of boundary layer  behaviour leads 

In order t o  remove an apparent 
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Although Wegener & Parlange recognised t h e  existence of a closed 
s t ruc ture  i n  t h e  wake f o r  l a r g e  bubbles whose wakes were laminar (and 
whose ve loc i t ies  are thus dependent on l iqu id  propert ies)  t h e i r  view 
was essent ia l ly  t h a t  once t r a n s i t i o n  t o  turbulence occurs, t h e  wake 
becomes amorphous. Their method of flow visual izat ion w a s  a schl ieren 
technique which cer ta in ly  does reveal  t h e  extent of t h e  turbulence 
but is not par t icu lar ly  su i tab le  f o r  revealing flow pat terns  s ince t h e  
paths of individual p a r t i c l e s  of f l u i d  a r e  not readi ly  ident i f ied .  The 
main fea tures  of t h e i r  f igure  5 showing turbulence behind spherical- 
cap bubbles i n  water a r e  not inconsistent with f igure  4 here, i n  
par t icu lar  t h e  curvature of t h e  edge of t h e  turbulent  region immediately 
below t h e  bubble which continues t h e  cap curvature implies order i n  t h e  
flow there ,consis tent  with a primary wake vortex. In  f a c t  Wegener & 
Parlange record i n  a footnote t h a t  they have observed s a t e l l i t e  bubbles 
t o  rec i rcu la te  i n  t h i s  region and, as i n  t h e  present experiments and 
i n  Temperley & Chambers' 
a mass of l i q u i d  i n  t h a t  region moving with t h e  bubbles. The 'edge' 
of the  turbulence i n  t h e  secondary part of t h e  wake is of course not 
a streamline i n  the  flow, and the  photographs do not demonstrate t h e  
existence of a wake of t h e  Helmholtz type.  

CONCLUSION 

observations, t h i s  implies t h e  existence of 

Closed wake models accurately describe t h e  flow near t h e  f ront  
of spherical-cap bubbles giving r e s u l t s  i n  good agreement with experiment 
because they take  i n t o  account t h e  geometry of t h e  r e a l  flow. 
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Figure 1. Streamlines relative to a 40 ml bubble 
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Figure 2 .  instantaneous streamlines, 40 ml bubble 
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Figure 3. Instantaneous streamline patterns 
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THE APPLICATION OF DROPS AND BUBBLES 

TO FLUID FLOW MEASUREMENTS 

E. F. C. Somerscal es 
Renssel aer Polytechnic Ins ti t u t e  

This paper i s  concerned w i t h  the character is t ics  o f  drops and 
bubbles when used as f l ow  t racers for  the quan t i t a t i ve  study o f  f l u i d  
ve loc i ty .  P a r t i c u l a r  a t ten t i on  i s  pa id t o  the p rac t i ca l  aspects o f  
assessing and choosing bubbles and drops f o r  f low measurement. Both 
laminar and turbulent  f l o w  s i tua t i ons  are considered. The determina- 
t i o n  o f  the dynamic cha rac te r i s t i cs  o f  bubbles and drops i s  discussed 
together with the physical  proper t ies required f o r  such a determina- 
t ion.  The e f f e c t  o f  extraneous force f i e lds ,  p a r t i c u l a r l y  grav i ty ,  
i s  reviewed. The theo re t i ca l  and p r a c t i c a l  aspects o f  in t roducing 
bubbles and drops i n t o  the f l u i d  are considered. The paper concludes 
w i t h  a discussion o f  the types o f  bubbles and drops, t h e i r  se lec t i on  
and a review o f  previous appl icat ions.  

Manuscript was n o t  ava i l ab le  f r o m  the  author a t  the t ime the proceedings 
were submitted t o  the  p r in te r .  
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A Review of 

TW3 DYNAMICS OF BUBBLES AND DROPS I N  A VISCOELASTIC FLUID 

E. Zana and L. G. Leal 
Chemical Engineering, California Ins t i t u t e  of Technology 

I. INTRODUCTION 

Some of the most important processes i n  the chemical industry involve the 

motion and dissolut ion of gas bubbles and drops i n  viscoelast ic  suspending fluids.  

Nevertheless, re la t ive ly  few investigations have been undertaken to  date  which 
consider these problems e i the r  experimentally or  theoretically.  In t h i s  paper 

we b r i e f ly  review recent research progress. 
In the f i r s t ,  w e  recap the  rheological behavior of a viscoelast ic  f luid i n  

general viscometric o r  elongational flows. 

recent observations and/or predictions for  several  diverse types of bubble o r  
drop motion, concentrating on those e f f ec t s  which appear t o  us t o  be primarily 

due to  the non-Newtonian rheological properties of the suspending fluid.  
Although most of the' macromolecules which are commonly used t o  produce visco- 

elastic solutions are a l so  moderately strong surfactants ,  we w i l l  not be 

spec i f ica l ly  concerned with the  re la ted  in t e r f ac i a l  o r  surface e f fec ts .  
addition, tnc many papers which describe theoret ical  calculations of bubbles o r  

drops i n  power-law type non-Newtonian f lu ids  w i l l  

The paper is s p l i t  i n to  two parts.  

In the second par t ,  we describe 

In 

be considered here. 

11. RBEOLOGICAL PHENOMENA I N  VISCOELASTIC FLUIDS 

In general, the features characterizing most r e a l i s t i c  viscoelast ic  f lu ids  

may be summarizedt as a nonlinear re la t ionship between stress and bulk deforma- 

t ion rate (specif ical ly ,  the symmetric rate of s t r a i n  tensor) and a menory 
for past configurations which diminishes on a time scale X. The stress at a 

par t icu lar  point ia space thus depends not only on the instantaneous deformation 

rate, but on the his tory of deformation of the f lu id  element which occupies 
that point. In  steady viscometric flows (i.e. shear flows), these features 

lead t o  a decrease i n  the e f fec t ive  viscosi ty  with increasing shear rate and 
the existence of non-isotropic normal stress contributions which correspond t o  

an extra flow-induced tension o r  compression i n  the t lu id .  ti 

Although these e f fec ts  are well-known, they cons t i tu te  only a portion of 

the  picture  for  most problems i n  bubble and drop dynamics where the loca l  f l u id  

' with apologies to  any rheologists i n  the audience 
ti A f luid whose only non-Newtonian charac te r i s t ic  is a shear-thinning viscosi ty  

w i l l  be called purely-viscous. 
cr ipt ion of such a f luid.  

The power-law model is the most common des- 
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motion near the bubble o r  drop is almost always unsteady i n  e i the r  a Lagrangian 

o r  Eulerian sense. When the flow is not steady, the mechanical behavior of the 

f lu id  depends strongly on the time scale of change i n  the flow, T, compared 
with the in t r in s i c  scale  A of the f lu id ' s  memory. 

response w i l l  be closely similar t o  tha t  i n  steady flow. 
A are of comparable magnitude, the f lu id  microstructure lags behind the imposed 
deformation and the stress both increases re l a t ive  to  that  in a purely-viscous 
f lu id  and shows a phase l ag  r e l a t ive  t o  the deformation. For example, i n  rapid 

start-up of a viscometric flow (or rapid increase i n  deformation rate from one 

steady value to  another), there  is a charac te r i s t ic  overshoot of stress which 

approaches the steady-state value i n  an osc i l la tory  fashion with a period of the  

order A. Similarly, i f  a steady flow is suddenly stopped, the stress does not 

re turn instantaneously to  i ts  rest value, as it would i n  a purely-viscoue f lu id ,  
but ra ther  relaxes on a t i m e  sca le  which is  again related to  A .  
i f  the  driving force fo r  motion is suddenly removed, there is generally a macro- 
scopic recoi l  in which the motion may actual ly  reverse itself before vanishing 

a t  long times. 

Provided T >> A, the material 
However, when T and 

In addition, 

Further. of significance to  many problems of bubble or  droplet  motion is 
the  material behavior i n  non-viscometric flows, par t icular ly  the  so-called uni- 
ax ia l  extensional deformations which are characterized by the elongational 
viscosity.  

and to  a l so  increase rapidly with deformation r a t e ( i n d i r e c t  contrast  t o  the 

shear viscosity) evenin very d i lu t e  polymeric solutions where the viscometric 
behavior is indistinguishable from a Newtonian f luid.  It has, i n  fac t ,  some 
times been suggested tha t  the elongational viscosity becomes effect ively i n f i n i t e  

a t  some critical rate of elongation. 

experimentally. 

f lu id  is rapidly decreased most often by in te rna l  readjustment  of the flow 

patterns. 

a small channel.' 

would produce some par t icu lar  rate of extension f o r  a given flow rate, the 
f luid which enters  the  small channel is res t r ic ted  upstream to  a narrow conical 

area, leaving a slowly recirculat ing toroidal  eddy f i l l i n g  the region between 

the w a l l s  and the cone. In t h i s  way the resul t ing f lu id  motion exhibi ts  a much 
reduced extension rate and correspondingly smaller stresses i n  the converging 

region of the  flow. 

uniaxial  elongational motions due to  the la rge  var ia t ions i n  stress which 

accompany a change i n  the  rate of extension. 

The elongational viscosi ty  is found to  increase with increase of A 

Of course, such an ef fec t  cannot be observed 

What happens instead is tha t  the  loca l  rate of extension i n  the 

An example is the  well-known converging flow from a la rge  tank in to  

In tha t  case, instead of following the w a l l  contours, which 

This type of in te rna l  flow adjustment is cnarac te r i s t ic  of 

I 

! 

r . , ..: 
* '  , 
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Finally,  it is relevant t o  remark br ie f ly  on the existence of const i tut ive 

models which incorporate the e f f ec t s  described above. 

ask whether t h e  poss ib i l i ty  ex is t s  for  realistic theoret ical  calculations of 
bubble aud drop motion in  v iscoe las t ic  f lu ias .  Unfortunately, the prospects 

are not pod at present. The d i f f i c u l t i e s  are two-fold. First, and foremost, 
is the lack of realistic const i tut ive models. 

s t i t u t i v e  re la t ions  which have been proposed, none has yet  been tound t o  be 

quant i ta t ively sa t i s fac tory  even for  simple viscometric (shear) flows, where 

extensive experimental data  exists.2 Furthermore, even i f  one is will ing to  

accept qua l i ta t ive ly  correct  viecometric behavior, there  is no a prwA reason 
to  expect equally good performance i n  nonviscometric flows such as those 

associated with the motion of bubbles o r  drops, and no extensive rheological 

s tudies  of nonviscometric flows have yet  been carr ied out. 
cu l ty  with any theoret ical  analysis is due t o  the  basic  nonlinearity of visco- 
elastic f lu id  behavior. In  addition t o  the familiar non-linear i n e r t i a  terms i n  

the equations of motion, there are additional nonl inear i t ies  associated with the 

const i tut ive model. 

flow do the equations become l inear ,  and then the material  is limited t o  nearly- 
Newtonian behawtor. 

In  par t icular ,  one may 

Of che very la rge  number of con- 

The second d i f f i -  

Only in  the limit of dynamically and rheologically slow 
t 

Thus, i f  w e  are to  improve our knowledge and mderstanding of the motion 
of drops o r  bubbles i n  a viscoelast ic  f lu id ,  we must re ly  primarily upon experi- 

mental evidence, coupled with a qua l i ta t ive  application of general rheological 

pr inciples  ra ther  than detai led theoret ical  analysis.  

I 

I 

! 

I 

111. VISCOELASTIC CONTRIBUTIONS TO BUBBLE AND DROP DYNAMICS 

A. Translation of Gas Bubbles through a Quiescent Fluid 
The aspect of bubble and drop dynamics which has received the  most a t ten t ion  

in the l i t e r a t u r e  is the  buoyancy driven motion through a quiescent f luid.  

addition to  its fundamental importance, t h i s  problem is of considerable prac t ica l  
i n t e re s t  in the chemical engineering l i t e r a t u r e  because of its relat ionship to  

residence-time and mass transfer  r a t e s  i n  gad l iqu id  contact operations. 

In 

1. General Character is t ics  

In  f igure 1 we have plotted terminal velocity,  U, as a function of bubble 
volume, V, for  the  typical  case of a 1% solut ion of Separan AP36in water. 

shown are data  for glass  spheres of various volumes, and instantaneous values 

Also 

Flows in which T >> 1 and UL/v << 1. 

Typical rheological data for  t h i s  system may b e  found i n  references 2 and 11. 
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of U versus V for a dissolving C02 bubble. 

of photographs of the nondissolving bubbles, which are intended t o  i l l u s t r a t e  

typical bubble shapes in a viscoelast ic  l iquid.  

of bubble shape seems t o  have been that  of P h i l i p p ~ f f , ~  but subsequently a number 

of invest igators  have reported relevant experimental observations. 

photographs are from Zana.4 

small sizes, and is  then deformed by the  e f fec ts  of f luid ine r t i a  through oblate 

spheroidal shapes t o  the well-known spherical-cap at iarger  bubble volumes. 

However, i n  the viscoelast ic  case the i n i t i a l  deformation is generally dominated 

by e l a s t i c  contributions which produce a prolate  e l l ipsoid,  followed by an inverted 

tear-drop shape. 

in to  an oblate  spheroid with a t r a t i i n g  cusp and f ina l ly  in to  a modified spherical- 

cap. 

smallest bubble s izes  i n  which the e f fec t ive  Reynolds number is very small and 

e l a s t i c  e f fec ts  modest, the  data for  the  non-dissolving bubble is  i n  essential 
agreement w i t h  that fo r  t he  r ig id  glass spheres. 

is an abrupt t rans i t ion  from t h i s  Stokes-like regime t o  a new regime which shows 

essent ia l ly  the same i n i t i a l  slope (alog U/alog V), but i n  which the  terminal velo- 

ci t ies are very considerably increased. 

region where the bubble approaches a spherical-cap shape and (alog U/alog V) 
approaches 116 a f t e r  wall-corrections have been applied, as or iginal ly  predicted 

by Davies and Taylor’ for  a Newtonian f luid.  

Finally, we have superposed a series 

The f i r s t  extensive investigation 

The present 

In  the Newtonian case the bubble is spherical  for  

As i n e r t i a  e f f ec t s  increase, the prolate  tear-drop is deformed 

The terminal velocity data a l so  show several  d i s t i nc t  regimes. For the 

However, a t  re % 0.29 cm, there 

Finally, there  is a gradual t rans i t ion  

A measure of the  importance of f lu id  e l a s t i c i t y  i n  an unsteady flow is the 

largeness of the r a t i o  of the in t r in s i c  memory relaxation time 1 and the  t i m e  
scale of change of the flow R/U i n  which R is the  charac te r i s t ic  length scale of 

the  bubble i n  the direct ion of motion. This r a t io ,  a8 w e l l  as the  corresponding 

Reynolds number is tabulated for  the data of f igure 1 i n  table  1 which is 

appended t o  the figure. In  the l imi t  as bubble volume V + 0 or  V + =, i t  may be 

shown tha t  X/(R/U) + 0. However, c lear ly  in the range re = 0.15 t o  re - 1.5 for  

which we have data,  the r a t i o  of time scales is not small and e l a s t i c i t y  should 

have a noticeable influence, especial ly  fo r  the smaller s izes  where i t  is not 

moderated s ignif icant ly  by iner t ia .  

For r c 0.15, the s lope (dlog Ufdlog V) must approach the  Newtonian creeping e , 
flow value of 213 as bubble volume is decreased. 

the measured slope is  greater than e i the r  the creeping flow value or  the value 

(1 + n)/3n, which is calculated using a power-law const i tut ive model.6 A compari- 

son of the power-law parameter n obtained from measurements of viscosity i n  simple 

However, in the range of f igure 1, 
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shear flow with that inferred from the  measured slope @log Ufalog V) is shown 

in t ab le  2 for  several  Separan AP30/water/glycerine solutions.  

l a w  model only includes purely-viscous e f fec ts ,  t h i s  comparison provides strong 

evidence for  t he  importance of the f lu id  e l a s t i c i t y  i n  the motion of small 
bubbles, a t  least for  moderate polymer concentrations. 

s ignif icant  elastic ef fec ts  i n  the  motion of small bubbles may be seen in  the  

prolate  shapes of f igure 1. W e  have noted previously tha t  viscoelast ic  flows 
of ten adopt a detai led pat tern which minimizes the elastic component of the  stress. 
In motion of a r ig id  body, t h i s  can only be accomplished by increasing the  length 

of the region fore  and a f t  i n  which the flow is s igni f icant ly  influenced by the 

body. 

cylinders. 
achieved by deformation of shape t o  an elongated (or prolate)  form, and t h i s  f ac t  

suggests one possible explanation of the prolate  spheroidal and tear-drop shape5 
which are ac tua l ly  observed. 

Since the power- 

A fur ther  indication of 

Such an e f f ec t  is indeed i n  flow past  r ig id  spheres and 

In the case of bubbles (or drops), a similar e f f ec t  can a l so  be 

The terminal velocity adopted a t  steady state is tha t  value which gives an 
exact balance betweeu the rate of working by buoyancy forces, FU, and the rate of 
energy diss ipat ion i n  the f luid.  

two d i s t i n c t  ways ; f i r s t ,  through changes i n  the velocity f i e ld  and, second, by 

the  elastic stress contribution to  the  diss ipat ion rate. For la rge  bubbles, in 
which the  inertia terms dominate both viscous and elastic terms i n  the  equations 

of motion, the  veloci ty  f i e lds  a re  essent ia l ly  the same in  Newtonian and non- 

Newtonian f lu ids  so tha t  the  main e f fec t  is through the diss ipat ion mechanism. 
Although re la t ive ly  minor, especially i n  the spherical-cap regime, experiments 

in  a series of increasingly viscoelast ic  f lu ids  do show a systematic decrease 
in terrninal velocity a t  a fixed volume, implying, as expected in tu i t ive ly ,  tha t  

the elastic contribution t o  the rate of energy diss ipat ion must be posit ive.  

in general, the  v iscoe las t ic  e f f ec t s  on "dissipation" and of changes in the  velocity 

f i e ld  toward a smoother o r  elongated configuration are a t  least pa r t i a l ly  

cancell ing in t he i r  influence on terminal veloci ty  for  a given volume. 
smaller bubbles, in which the  i n e r t i a  terms are negligible,  the influence of 
v i scoe las t ic i ty  on bubble motion may s t i l l  be small i f  the  flow is "visco- 

e l a s t i ca l ly  slow" i n  the  sense R/U >> A. 

important for  small bubbles (or drops) as evidenced in f igure 1 and tab le  1. 

The latter is effected by v iscoe las t ic i ty  in  
6 

8 

4 

Thus, 

For 

More frequently, v i scoe las t ic i ty  is 

. ,~ . , . . .- . ... -.. . . -. ... 



. .  
. . .  

433 

2. The Velocity Transition Phenomenon 

Of a l l  of the viscoelast ic  e f fec ts  exhibited i n  f igure 1, the most intr iguing 

and potent ia l ly  important is the  la rge  and discontinuous t ransi t ion i n  terminal 

velocity at  re 0.29 cm. The existence of such a t ransi t ion w a s  f i r s t  reported 

by Astarita and Apuzzo,' who found a six-fold increase i n  bubble velocity a t  the 

t rans i t ion  point for  a 0.5% solution of the commercial 5-100 polymer. 

r e su l t s  have more recently been reported by Calderbank, Johnson and Loudon'' i n  

1% Polyox solutions and by Leal, Skoog and Acrivosll i n  solutions of the  commercial 

coagulation polymer Separan AP30. 
a lso  been observed i n  the case of l iquid drops mving through viscoelast ic  

l iquids  12'13'14'15 and for  gas bubbles which are dissolving 

Simi la r  

A s teep but not abrupt increase in velocity has 

t (see f igure 1). 

Kintner e t  a d 5  proposed tha t  the increase i n  velocity for  drops is the 
result of a transition in  the conditions a t  the drop interface from a no-slip 

t o  a freely-circulating regime (equivalent t o  the well-known t rans i t ion  from the  

Stokes to  Hadamard regimes i n  Newtonian l iquids)  coupled with a change of shape 

corresponding t o  a decrease i n  f ronta l  area. In the case of gas bubbles, however, 

Astarita and Apuzzo9 showed experimentally that  the f ronta l  area actual ly  

increased during the velocity t ransi t ion.  

the velocity increase was solely a r e su l t  of the t rans i t ion  i n  surface conditions, 

with v iscoe las t ic i ty  hypothesized as being responsible fo r  the abruptness of the  

t ransi t ion.  

could be largely accounted fo r  by considering only the purely-viscous, ehear 

thinning viscosi ty ,  ignoring elastic and normal stress contributions. 

Leal, Skoog and Acrivos.ll 

bubble ve loc i t ies  for  volumes less than the c r i t i c a l  volume are precisely equal 

to  those measured for  equal volume glass  spheres provided su i tab le  density 

corrections are u t i l i zed ;  b) no terminal velocity t rans i t ion  occurs for  the  

ke a re su l t ,  it was speculated tha t  

Further, i t  w a s  implied tha t  the magnitude of the velocity t rans i t ion  

A p a r t i a l  test of Astarita's proposal was  reported several  years ago by 

Careful experimental measurement showed tha t ,  a)  the 

t 
The significance of t h i s  observation remains unclear t o  us a t  the present t i m e .  
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glass spheres. The relevant data are reproduced i n  f igure 1. Hence, strong 

ind i rec t  evidence was found t o  confirm the change i n  in t e r f ac i a l  conditions as 
the  cause of the observed velocity t ransi t ion.  

viscosity,  i n  the absence of viscoelast ic  e f fec ts ,  w a s  a l so  studied by employ- 

ing an empirical (curve-fit) purely-viscous f lu id  model t o  numerically calcu- 

late the  terminal ve loc i t ies  on non-circulating, pa r t i a l ly  c i rculat ing,  and 

fu l ly  c i rcu la t ing  spherical  bubbles a t  the  measured c r i t i c a l  volume. 

found that the presence of shear-dependent viscosi ty  alone could only account 

for  about 30% of the magnitude of the measured velocity t ransi t ion.  

w a s  surmised tha t  be t te r  agreement between theory and observation could only be 

achieved by taking account of viscoelast ic  e f f ec t s  in the f luid.  

greater  significance however was the subsequent conclusion, based on simple 

i c  contribu- qua l i ta t ive  arguments, tha t  a re la t ive ly  small addi t ional  viscoelast  

t ion to  the force balance on the bubble would be suf f ic ien t  t o  account for  the 

much la rger  measured veloci ty  increases. The conditions required t o  produce a 
consistent result are that the  drag be reduced i n  both the pre-transition and 
post-transit ion regimes, but with the e f f ec t  being somewhat greater i n  the 

latter case. 

The e f f ec t  of shear dependent 

It w a s  

Hence, it 

Of perhaps 

As an initial test of the  v i ab i l i t y  of t h i s  proposal, it w a s  desired t o  

determine whether e l a s t i c  effects ,  in the absence of shear-dependent viscosi ty ,  

would contribute to  the pa r t i c l e  drag i n  a qua l i ta t ive ly  consistent manner. In  
order t o  invest igate  t h i s  question, a n a 4  

solutions,  based on the 6-constant Oldroyd'' f lu id  model, t o  compare the visco- 
elastic contributions t o  the drag on a r ig id  no-slip sphere and on a freely 

c i rcu la t ing  spherical  bubble. The r ig id  sphere result w a s  taken from the solu- 
t ion of Leslie." The solut ion for  t h e  case of a spherical  bubble was obtained 

by Zana.4 An equivalent, independent solut ion for  the stream-function f i e ld  

was  published independently by Wagner and Slattery.18 
Slat tery 's  analysis  appears t o  contain a number of algebraic and/or pr int ing 

errors .  

on a spherical  bubble was  found by Zana t o  be 

u t i l i zed  "slow-flow" asymptotic 

However, Wagner and 

In  the limit corresponding t o  a shear-independent viscosi ty ,  the drag 

2 nbubble - 27nlOUba{2 - 0.0660 - a)(30 + a)€ + . . . I  
where no is the  viscosi ty ,  U,, the bubble velocity and a the bubble radius. 
The parameter E is t he  r a t i o  of the  in t r in s i c  relaxation time k1 from the 

Oldroyd model, t o  the convective t i m e  sca le  a/% and is assumed t o  be small i n  

accord with the "slow-flow" approximation. The parameter a is the  r a t i o  of 
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retardat ion and relaxat ion times h2/X1 and s a t i s f i e s  

with the Newtonian l i m i t  being ci - 1. 

drag on a r i g i d  sphere is 

The corresponding 
17 

2 - 2nq0Usa{3 - 0.016(1 - a ) ( 3  - a)€ 1 . Dsphere 

expression for  t h e  

Hence, comparing t h e  two expressions, it may be seen t h a t  the  purely e l a s t i c  

contribution t o  the  drag causes a decrease i n  both cases a t  O(E ), but t h a t  the 

e f f e c t  is much mre pronounced f o r  the bubble than for  the  r i g i d  sphere. Thus, 

the "slow flow" v iscoe las t ic  approximation o f f e r s  s t rong preliminary evidence 

t o  support the  or ig ina l  hypothesis of L e a l ,  Skoog and Acrivos. 

2 

11 

I n  addition, we have recent ly  carr ied out an extensive flow visual izat ion 
study f o r  gas bubbles i n  solut ions of Separan AP30 i n  water and water/glycerine, 

as an independent attempt t o  assess the  importance of v i scoe las t ic  contributions 

to  t h e  veloci ty  t r a n s i t i o n  phenomena. 
obtained f o r  bubbles which were s l i g h t l y  smaller and f o r  bubbles which were 
s l i g h t l y  la rger  than t h e  t r a n s i t i o n  volume. Also obtained were streamlines 

f o r  r i g i d  par t ic les ,  which were machined t o  the same shape as the  bubbles, in 
Sep AP30fwater and in mineral oil (Newtonian) at the  same nominal Reynolds 

numbers. 

upstream influence of the  bubbles on the  flow in the  Sep AP30 solutions,  as 
compared with tha t  f o r  the  geometrically s imi la r  r i g i d  p a r t i c l e s  i n  mineral 

oil. 
appeared t o  be enhanced a f t e r  t rans i t ion ,  thus supporting the "requirement" 

of la rger  v i scoe las t ic  contributions i n  the post-transit ion regime. 

Centerplane s t reakl ine  photographs were 

The main evidence of elastic influence was a somewhat stronger 

Signif icant ly ,  the  degree of upstream influence for  the  bubble a l s o  

B. 

A problem of considerable prac t ica l  importance i n  the  chemical processing 

Deformation and Break-up of Drops i n  Shear and Extensional Flows 

industry is the  dispersion or emulsification of one l iqu id  phase i n  another. 

Insight  i n t o  t h i s  highly complex phenomena may be obtained by studying t h e  

deformation and break-up of a s ingle  l iqu id  drop subjected e i t h e r  t o  shear o r  

extensional flow of an ambient f l u i d .  

f lu id  (or both) is non-Newtonian, experimental observation has shown t h a t  the  

deformation and break-up processes can be fundamentally changed from the more 

When e i t h e r  t h e  drop, o r  the  suspending 

. . . . . . . .  . . . . . . .  ~ . . - .  
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familiar phenomena i n  a Newtonian system. 

The theory of deformation and alignment of Newtonian drops subjected t o  
19 
20 

simple shearing motion of a second Newtonian f luid was  i n i t i a t ed  by Taylor 

and taken to  higher levels  of approximation by Chaffey, Brenner and Mason, 
and by Cox? 

drops i n  a non-Newtonian suspending f lu id ,  where the  deviations from predicted 
Newtonian behavior are greatest. 

Here, w e  concentrate on the case of Newtonian o r  v i scoe las t ic  

t 

1. Defonuation 

The majority of experiments have been reported for  Newtonian drops sub- 

jected t o  simple shearing motion of a non-Newtonian suspending f lu id .  
the ambient f lu id  is purely-viscous, 24 the drop becomes increasingly deformed 

with increase of shear-rate, but does so l ea s  rapidly than predicted by the 
Newtonian theory. 

degree of shape deformation appears qua l i ta t ive ly  s idlar  t o  the  Newtonian case, 

and for  small degrees of deformation, the major axis of the  drop is aligned a t  
45' t o  the flow. In  contrast ,  t he  degree of alignment for  a viscoelast ic  sus- 

pending fluid22 is much greater,  and shows an apparent small deformation limit 

of only 29' from the flow direction. In  addition, although the  observed modes 

of deformation are similar to  the Newtonian and purely-viscous cases, it has 
been shown e ~ p e r i m e n t a l l y ~ ~  tha t  the  degree of deformation does not always 

increase monotonically with shear-rate, but for  small drops exhibi ts  a max imum 
at  some intermediate value. 

When 

On the  other hand, the droplet  or ientat ion for  a given 

Relatively few studies  have been carr ied out of bubble o r  droplet  deforma- 
t ion i n  non-viscometric flow, other than the  deformation i n  simple t rans la t ion  

which was  described ea r l i e r .  The only other work of which we are aware is the  
Ph.D. thes i s  of W. K. Lee26 which is concerned i n  par t  with deformation and 
breakup of viscoelast ic  drops i n  extensional flow f i e lds  of a Newtonian suspend- 
ing f luid.  

tonian drops with a viscosi ty  equal t o  the zero shear viscosi ty  of the  non- 
Newtonian f h i d .  

It is important t o  note tha t  a l l  of the  s tudies  referred t o  above were 

carr ied out without any attempt t o  systematically vary or  measure the  inter-  
f ac i a l  properties between the drop and surrounding f luid.  

study by Barttam27 provides one example which i l l u s t r a t e s  the danger i n  
generalizing such resul ts .  

The r e su l t s  of Lee show the deformation t o  be the  same as for  New- 

A recent experimental 

Bartram studied the deformation of a viscoelast ic  

Experiments relevant t o  non-Newtonian drops i n  a Newtonian suspendin 
have been reported by Gauthier, Goldsmith and Mason22 and by Tavgaq. 

..-. , . 
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f l u i d  with zero o r  near zero i n t e r f a c i a l  tension and r e l a t i v e l y  la rge  in te rna l  

viscosi ty .  

d i rec t ion  of the v o r t i c i t y  axis, then exhibited a simultaneous rocking motion 

reminiscent of Jeffery o r b i t s  for  a r i g i d  spheroid i n  a Newtonian f l u i d ,  

f i n a l l y  buckling and breaking up as t h e  elongation w a s  continued. 

astonishing mode of deformation (and break-up) is q u i t e  unlike any of the  

previous observations described above, and c lear ly  emphasizes the d i f f i c u l t y  of 

analyzing experimental results when a l l  of the  relevant dimensional parameters 

have not been determined o r  varied i n  a systematic fashion. 

In t h i s  case the  i n i t i a l l y  spherical  drop f i r s t  elongated i n  the 

28 

This ra ther  

2. Break-up 

The mst comprehensive invest igat ions of drop break-up i n  non-Newtonian 
systems are due t o  Flumerfelt” and h i s  students.  23’26 

shear flow have been reported by TavgaoZ3 f o r  v i scoe las t ic  drops i n  Newtonian 

f lu ids ,  and by FlumerfeltZ5 and T a v g a ~ ’ ~  f o r  Newtonian drops i n  a v iscoe las t ic  

suspending f lu id .  Dimensional analysis  shows tha t  the  c r i t i c a l  shear-rate f o r  
break-up i n  a given v iscoe las t ic  f l u i d  must depend on the i n t e r n a l  to  external  
v i scos i ty  r a t i o ,  and on t h e  r e l a t i v e  magnitude of the  relaxat ion t i m e  f o r  the 

f l u i d ,  A,  compared t o  the  t i m e  scale 
C 

experimental data f o r  Newtonian systems has shown the  c r i t i c a l  shear rate f o r  

break-up, ic, t o  be unique f o r  each f l u i d  system. 

extensive studies in viscoe las t ic  f l u i d s  c i t e d  above a l l  suggest t h a t  yc increases 

l i n e a r l y  w i t h  A i c  f o r  f ixed and moderate values of the v iscos i ty  r a t i o  and 

Results for  simple 

of the  shearing motion. Available 

In contrast ,  however, the  

greater  than 1. Thus, i n  non-dimensionalized form, it is found 

where n‘ and u are the v iscos i ty  and i n t e r f a c i a l  tension, and D the  equivalent 

diameter of the  drop. 

re la t ionship is t h a t  break-up can occur f o r  a given f l u i d  system only i f  

An extremely important and obvious implication of t h i s  

i.e. there  exists a cri t ical  drop-size below which break-up cannot occur for  

v i scoe las t ic  systems. 

where, within c e r t a i n  l i m i t s  of the  v iscos i ty  r a t i o ,  drops of any s ize  may be 

broken by application of s u f f i c i e n t l y  high shear rates, and s t rongly suggests 

the d i f f i c u l t y  of achieving very f i n e  dispersions i n  v iscoe las t ic  systems. 

This r e s u l t  is i n  sharp contrast  with t h e  Newtonian case 
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Another r e s u l t  of considerable importance is the influence of t ransient  

e f fec ts  on drop break-up i n  viscoelast ic  systems. 
wed rapid Start-up of simple shear flow as a test case. 
systems, or  fo r  viscoelast ic  drops i n  a Newtonian f lu id ,  the break-up under 

25 Both Tavgacz3 and Flumerfelt 
For fu l ly  Newtonian 

t ransient  conditions does not  d i f f e r  s ign i f icant ly  from that  observed i n  steady 

flow. However, fo r  Newtonian drops i n  a v iscoe las t ic  f lu id ,  the critical 
shear-rate fo r  break-up is sharply decreased in the start-up flow re l a t ive  to  

its value in steady shear. 

obtained by Lee26 for  break-up in a uniaxial  extensional flow. 

fixed and moderate value of the viscosi ty  r a t io ,  the cri t ical  extension rate 
for  break-up increases l inea r ly  as the t i m e  scale of the  flow is decreased 
r e l a t ive  t o  the relaxation t i m e  of the  f luid.  

break-up can occur only fo r  drops la rger  than some c r i t i c a l  volume. 

is t o  increase the required f l a r r a t e  for  break-up. 

elastic e f fec ts  are most s ignif icant ,  break-up is apparently prevented altogether 

in a suf f ic ien t ly  viscoelast ic  f lu id  (large A). 
r e f l ec t  an increasing degree of "smoothing" of the disturbance flow as the f lu id  

mtion adjusts ,  i n  the manner described earlier, to  avoid la rge  elastic s t r eas  

contributions. However, no detai led theoret ical  investigation of the  break-up 

phenomena has yet  been attempted, and there  is no experimental evidence avail-  

able  of the detai led velocity f i e lds  i n  the v ic in i ty  of a drop which could be 

wed t o  test t h i s  hypothesis. 

start-up f l w , i s  almost cer ta inly a result of the charac te r i s t ic  la rge  overshoot 
of s t r eas  which occurs under such circumstances (see section 11) although again 

no d i rec t  experlmental o r  theore t ica l  support exists for  t h i s  assertion. 
v i e w  of the  prac t ica l  importance of dispersion processes, it is t o  be hoped 

tha t  fur ther  investigations w i l l  be carr ied out which w i l l  e lucidate  the 

mechanism of deformation and break-up in viscoelast ic  f luids .  

Finally, results similar t o  those of Flumerfelt and Tavgac were also 

That is, for  a 

Thus, fo r  a fixed f lu id  system, 

In summary, we may note tha t  the  e f fec t  of viscoelast ic i ty ,  in all cases, 
For small drops, where 

These e f f ec t s  may possibly 

The decrease i n  c r i t i c a l  shear-rate during a 

In 

C. 

The change in bulk flow properties which may be a t t r ibu ted  t o  the suspended 
Lateral  Migration of Deformable Drops i n  Poiseui l le  and Couette Flow6 

drops of an emulsion depend c r i t i c a l l y  on the  concentration d is t r ibu t ion  i n  the  

flow apparatus. 
migrate across the  streamlines of a bulk (undisturbed) flow i n  such a manner as 
t o  produce a cross-stream variat ion of droplet  concentrations, even a t  very low 
par t i c l e  Reynolds numbers.28 In  Poiseui l le  flow, migration is toward the  tube 

It has been observed tha t  drops in a Newtonian system tend t o  

. .' 
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centerline,  while in Couette flow two-way migration occurs toward an equilibrium 

position which is midway between the cylinders. 
has been explained as resul t ing from deformation of the  drop and i ts  interact ion 

with the w a l l s .  

Mason and co ro rke r s  24'29 have shown experimentally tha t  the phenomenon are 

In both cases, the phenomena 

al tered s ignif icant ly  when the suspending f lu id  is non-Newtonian. Dist inct ly  

different  results are obtained depending upon whether the f luid is fu l ly  visco- 

elastic o r  purely-viscous. 

moved closer  t o  the inner cylinder for  the purely-viscous case, but closer t o  
the outer cylinder fo r  a viscoelast ic  fluid.  

v i scoe las t ic  f lu id  migrate toward the  tube axis as i n  the Newtonian case, but a t  
a much greater rate. Drops in a purely-viscous f lu id ,  however, exhibit  two-way 
migration toward an equilibrium posit ion which l ies between the center l ine and 

tube w a l l .  

experiments w i t h  r ig id  spheres i n  the same flow systems. 24s29 
t ion in the direct ion of lowest shear-rate when the ambient f lu id  is viscoelast ic ,  
but migration i n  the opposite direct ion for  a purely viscous suspending f lu id .  

Recently, Ho and Leal3' have obtained the former result analyt ical ly  for a visco- 

e l a s t i c  f lu id  i n  the  slow flow l i m i t ,  and have shown that the major e f f ec t  arises 
because of induced normal stresses i n  the disturbance flow near the par t ic le .  

Qualitatively then, it would appear tha t  the migration of deformable drops can 

be accounted for  by assuming a superposition of the migration e f fec ts  due to  

pa r t i c l e  deformability with those due to  the non-Newtonian rheology. 

i t  is evident tha t  t h i s  conceptual procedure takes no account of the  coupled non- 
Newtonian deformation e f fec ts ,  and a more def in i t ive  understanding of the  phenomena 

awaits fur ther  theoret ical  and experimental study. 

In Couette flow,24 the equilibrium posit ion is 

In Poiseuille flow,29 drops i n  a 

Qualitatively,  these results can be understood by considering Mason's further 
These show migra- 

Of course, 

D. Oscil la t ions and Collapse of Gas Bubbles Due to  Acoustic and Impulsive 

Pressure Variations, and Due to  Mass Transfer. 
The var ia t ion of bubble volume with time due to  pressure var ia t ions i n  the 

ambient f lu id ,  or t o  dissolution of the  bubble by mass t ransfer  is of both 

prac t ica l  and theoret ical  i n t e re s t  i n  connection with problems of flow-induced 

(or acoustical)  cavitation, and of gas-liquid contact mass-transfer operations. 

Interestingly,  however, with the exception of mass-transfer measurements for  a 
t ranslat ing 

available. Furthermore, unlike a l l  of the  previous examples, the motion induced 

in the f lu id  by the  changing bubble volume is a pure elongational deformation. 

very l i t t l e  experimental information of relevance is 
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Although t h i s  extensional motion is generally coupled with a buoyancy-driven 

t ranslat ion,  we consider here the l imit ing case in which the characteristic 
velocity of t ranslat ion is small and neglected compared with the charac te r i s t ic  

rad ia l  velocity induced by the  changing volume. 

1. Pressure-induced Volume Variations 
The motion of a void o r  an insoluble gas bubble induced by a sudden pressure 

surge, o r  by application of acoustic pressure var ia t ions has been studied 
theoret ical ly  by Fogler and Goddard 31,32 wing  a linear viscoelast ic  cowt i tu-  

ti- model. 
In the  absence of elastic ef fec ts ,  a void w i l l  generally collapse t o  zero 

radius when subjected t o  a sudden pressure surge, while an insoluble gas bubble 
w i l l  generally always rebound short  of ac tua l  collapse as a result of the  sharp 

increase in in te rna l  pressure. 

upon the magnitude of the  intrinsic relaxation time of the f lu id  compared with 

the classical Rayleigh collapse time fo r  the bubble o r  void. 
t i m e  exceeds the  Rayleigh collapse time, the elastic response of the f lu id  can 

s igni f icant ly  re ta rd  the collapse of a void and produce a prolonged osc i l la tory  

approach t o  the  f i n a l  collapse. 
and Goddard's3' analysis  for  a void shows e i ther  indef in i te  osc i l la t ion  about 

an equilibrium radius, o r  complete collapse on the f i r s t  cycle, depending on 

the magnitude of the imposed pressure increase. For f i n i t e  u, the  osc i l la t ion  

is damped in time, while for  f i n i t e  1, the void ultimately collapses,  but the 
process is delayed for  several  cycles with a f i n a l  collapse time which depends on 
1. In  a l l  cases, the period of osc i l la t ion  is essent ia l ly  the Rayleigh collapse 

time for  the  system. Insoluble gas bubbles, i n  f lu ids  with la rge  1, decrease 
from the i r  i n i t i a l  radius to  a new equilibrium radius v i a  a s imilar  osc i l la tory  

cycle which shows an amplitude dependent both on the  i n t r i n s i c  relaxation time 
and the e l a s t i c  modulus of the linear viscoelast ic  model.32 
of osc i l la t ion  is found for  values of close t o  the Reyleigh collapse t i m e .  

The response i n  a viscoelast ic  f lu id  depends 

When the relaxation 

Indeed, for  X + 0 and viscosi ty  u * 0, Fogler 

A minimum amplitude 

In an osc i l la tory  pressure f i e l d  (such as tha t  induced by acoustic waves), 
the motion of a gas bubble is systematically damped by a decrease i n  the time 
sca le  of osc i l la t ion  r e l a t ive  to  1, and with increase of the  elastic modulus. 

2. Bubble Collapse Due to  Dissolution 

The related problem of bubble collapse due to  dissolut ion of the  gas in to  
the surrounding l iquid d i f f e r s  qual i ta t ively from the pressure-induced motions 

which w e  have j u s t  discussed. Most important is the f a c t  t ha t  the mass-transfer 

process which drives the collapse, and the collapse-induced f lu id  motion are 
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intimately coupled. 

Oldroyd-type cons t i tu t ive  model16 t o  study the dynamics of bubble col lapse by dis- 

solut ion assuming t h a t  t h e  bubble and the suspending f l u i d  a r e  i n i t i a l l y  

motionless. As i n  previous examples, i t  was  found that the  e l a s t i c i t y  of the  

f lu id  played a s igni f icant  r o l e  only when the  na tura l  collapse t i m e  was comparable 

to the i n t r i n s i c  re laxat ion time A. 

In a recent invest igat ion,  Zana and Leal33 have used an 

A p l o t  of bubble radius  as a function of t i m e  is  shown i n  f igure 2 for  

three d i f f e r e n t  values of A. It may be noted, f i r s t  of a l l ,  t h a t  the  curves 

cross  each other a t  a dimensionless time of approximately 0.4. 
i n  A actual ly  produces an increased rate of bubble collapse during the  i n i t i a l  

s tages  of the col lapse process, but then acts t o  re ta rd  t h e  bubble motion for  the  

remainder of the  bubble's l i fe t ime.  The f l u i d  flow induced by collapse of a 
spherical  s ta t ionary  bubble is an unsteady uniaxial  extension. Therefore, one 

would expect t h e  elastic influence on the collapse process t o  be a d i r e c t  con- 

sequence of i t s  influence on the  elongational v i scos i ty  :. 
that { is an increasing function of the rate of elongation for fixed 

flow, and is a l s o  increasing €or increasing A.  
t o  collapse more slowly as h is  increased, provided changes i n  the  induced flow 

occur s u f f i c i e n t l y  slowly. 

Clearly, t h e  enhanced col lapse rate with increased A f o r  t < 0.1 cannot be ex- 
plained i n  terms of t h e  increase i n  steady-state elongational viscosi ty .  

i t  can be simply understood i n  a qua l i ta t ive  sense by considering the  t rans ien ts  

associated with stress growth. Recall that t h i s  is a start-up problem, i.e. 
i n i t i a l l y  t h e  bubble is  s ta t ionary  and there  is no f lu id  motion. Therefore, 

when the  bubble boundary is  set i n  motion a t  t = 0 by mass-transfer, there  is 

a t rans ien t  period of stress growth with an approximate t i m e  scale of t h e  order 

of the  i n t r i n s i c  ( s t ress )  re laxat ion time, A. During this period, the instan- 

taneous res i s tance  t o  motion is  less than i t  would be a t  steady-state i n  the 

same f l u i d  with the  same elongation rate and consequently t h e  col lapse rate 
overshoots i t s  corresponding steady-state value. Ultimately, as the  stresses 
bui ld  up, they too overshoot causing the  elongation rate t o  decrease u n t i l  i t  

Thus, an increase 

We have noted earlier 
and steady 

Thus, one would expect the  bubble 

This i s  precisely what is  observed for  times t 2 0.1. 

However, 

I f i n a l l y  approaches a slowly varying state i n  which the  steady elongational vis- 

cosi ty  is ef fec t ive  i n  governing the  col lapse rate. 

shoot of the rate of chahge of cavi ty  volume w a s  a l so  reported by Street34 f o r  

cavi ty  growth i n  a viscoe las t ic  l iqu id  i n  s p i t e  of the  f a c t  t h a t  t h e  f l u i d  

dynamics of Street's problem is fundamentally d i f f e r e n t  from the present col lapse 

problem-the bubble growth induces a b iax ia l  extensional flow, whereas the  

We note t h a t  a similar over- 

I 

I 
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I 
col lapse produces a uniaxial  extension. 

Final ly ,  it should be remarked t h a t  t h e  stress-overshoot is 
t o  the o s c i l l a t o r y  motion predicted by Fogler and Goddard3' i n  a 

t o  a sudden pressure 
may be found in Zana 
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Table 1 

re 

Table 2 

0.15 
0.2 
0.3- 
0.3+ 
0.4 
0.5 
0.6 
0.7 
0.8 

0.36 
0.55 
0.85 
1.4 
2.0 
2.2 
2.1 
2.1 
1.9 

1.0 2.3 
1.5 2.1 
2.0 1.9 

1.8 
7.5 
7.8 
9.3 x 

0.43 
1.3 
3.6 
4.6 
5.9 
5.7 
7.8 
8.3 

n(termina1 veloci ty  
Solution measurement) n(viscosi ty  @ 0.5 ecc-l) 

0.45 f 0.05 0.523% AP30 - 45.6% water 0.26 f 0.02 - 53.9% glycerine 

1% AP30 - water 
0.5% AP30 - water 
0.1% AP30 - water 

0.48 f 0.02 
0.72 k 0.05 
0.80 f 0.10 

0.68 f 0.07 
0.77 f 0.11 
0.85 f 0.14 
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Figure 1: Terminal velocity and bubble shape as a function of equivalent 
radiue for gas bubbles i n  a viscoelastic liquid: The Stokes 
and Hadamard l ines  are calculated for a Newtonian fluid with 
viscosity equal to that of the test fluid a t  zero shear-rate. 
The test fluid is 1% Separan AP30 i n  water. 
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Y a l  

Figure 2: The ef fect  of the memory 
rate of dissolution of a 
fluid: case 1, X = 0.1; 
X = 1.0 (from reference 

relaxation t i m e  X on the 
gas bubble in a viscoelast ic  
case 2 ,  X = 0.5; case 3, 

33). 

! 

. .. _ _  . .  . . .. 
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" A  STUDY OF THE DEFORMATION AND BREAKUP 

OF ACCELERATING WATER DROPLETS" 
! 

1 

James M. Reichman 
University of California, Lawrence Livermore Laboratory, Livermore, California 

and 
Samuel Temkin 

Rutgers University, New Brunswick, New Je r sey  

ABSTRACT 

An experimental study of the deformation and breakup of water droplets 
induced by weak shock waves was conducted in a horizontal shock tube. 
Droplets with diameters between 350 pn to 750 pm were allowed to fall through 
the tube and were exposed to the lateral  flow created by a shock wave. 
shock strengths chosen resulted in droplet deformation leading to either 
orcillation o r  breakup. 
using high speed photographic techniques capable of interframe times as short 
as 10 pa .  

The 

The droplet deformation and breakup w e r e  recorded 

The Weber number range studied was between 2 and 8. In this range 
breakup occurred by the "bag" type mode. The deformation leading to this 
type of breakup was studied in detail and the process was divided into four 
stages. 
of the droplet and a description of the flow causing the deformation is presented. 
The deformation leading to breakup was compared to the deformation leading 
to oscillation. 
establishment of a breakup criteria based on a cri t ical  droplet thickness, 
where the cri t ical  thickness is defined as the deformed droplet width which, 
when measured, can predict if a droplet wi l l  either break up o r  oscillate. 

Each stage is described in terms of the physical changes of the shape 

The comparison of the two types of deformation resulted in the 

A simple model was developed which predicts the lowest velocity that 
will cause a droplet to break up. 
observed critical thickness. 
were found to be within the experimental accuracy of existing data. 

The model was based on the experimentally 
The crit ical  velocities predicted by the model 

Introduction 

In physical processes droplets a r e  frequently subjected to a suddenly 
imposed flow field which has been initiated by the passage of a shock front. 
The manner in which the droplets respond to the dynamic forces of the flow 
field is often of importance to the process involved. For example, in a 
combustor the response of the fuel droplets to the detonation shock is of 
importance. 1 If droplet breakup occurs, better fuel atomization is achieved 
and higher combustion efficiencies are realized. When a space vehicle 
traveling at supersonic speeds enters a cloud the impaction of droplets on 
the nose cone can severely damage the vehicle.2, 3However. when the droplets 
enter the region behind the bow shock, breakup is possible and damage can 
be avoided. In a cloud, if a large droplet is shattered by a thunderclap it will 
produce several  micron sized droplets which may result in an increased rate  

. . .  
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of coalesence in the cloud. 
the mechanism of droplet breakup. 
of a droplet, it may be possible to accurately model breakup and to predict 
when it wil l  occur. 
experimental studies which yield an accurate time history of deformation 
leading to either oscillation or  breakup. 

The above examples point to the need of understanding 
By understanding what causes the breakup 

To understand this phenomena it is necessary to conduct 

The type of response exhibited by a droplet when acted upon by a n  
imposed flow field depends on the ratio of the dynamic forces trying to deform 
the surface to the surface tension force which resists deformation from a 
spherical shape. The ratio of these two forces is defined as the Weber number, 
We = p 
field. 
R the droplet radius, and u the surface tension. 
o i d e r  of 0. 1 o r  less,  the droplet will remain spherical. 
above 0. 1, but below a crit ical  value, the droplet oscillates. 
for  this range is called the critical Weber number, We,, and defines the 
upper limit for  which droplet breakup will not occur. 
the droplet wi l l  breakup, first by the "bagr' type of breakup and then, as the 
Weber number increases, by the shattering type of breakup. 

Uo2 R /  u p  and is used to characterize the droplet response to a flow 
the above expression, p1 is the fluid density, Uo the flow velocity, 

When We is small ,  of the 
For  Weber numbers 

The upper value 

Above this Weber number, 

Droplet breakup has been studied previously with the objective of 
predicting the cri t ical  velocity for  breakup, predicting breakup time, or 
determinin the mechanism of droplet shattering. Lane, and Hanson, Domich, 

the lowest critical breakup velocity around a. droplet. 
breakup velocity is that which causes the ''bag" type mode of breakup. 
breakup velocities, Uc, for droplets of the same liquid a r e  represented by the 
relationship Uc2D = constant in which D is the droplet diameter. 
of the two studies differ, with Lane obtaining consistently lower cri t ical  
velocities than those found by Hanson, et  al. 
will be discussed later. 

and Adams 5 have studied breakup and presented experimental correlations for 
The lowest cri t ical  

The 

The results 

The reason for this discrepancy 

6 Various studies of droplet shattering have been conducted. Taylor 
studied the breakup of droplets due to shock waves and the breakup of droplets 
accelerating in a uniform flow field. 

7 Engel studied the response of droplets to a flow, where the Weber 
number was  sufficiently high to shatter the droplet. 
change in shape of a droplet as it shattered and divided the changes into stages. 
Engel found that the droplets flatten, then reach a plateau where the flattening 
ceases and then the droplet shatters. 
tension acting against further flattening. 

Engel described the 

The plateau is attributed to surface 

Simpkins and Bales' examined the droplet breakup for various Weber 
For  7 < We < 50 they found droplet breakup occurred by the "bag" numbers. 

type mode. At higher Weber numbers droplet shattering occurred. Shattering 
was attributed to Taylor instabilities growing along the droplet surface rather 
than boundary layer stripping. 

9 Waldman, Reinecke, and Glen studied droplet shattering by means of 
x-ray photography. 
and determine when the droplet had disintegrated. 
they obtained a droplet breakup time for various Weber numbers. 

In this manner, they could see inside the droplet mist 
From these experiments 

! 

-1. 
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Analysis of droplet breakup and deformation have also been made. 
HinzelO developed a linear model based on the dynamic pressure exceeding 
the surface tension at the stagnation point by a factor, determined experimentally. 
His model allows only small  variations from the spherical droplet shape. 
Gordon11 developed a model to predict breakup time for a droplet breaking in 
the "bag" type mode. 
given velocity, below which breakup will not occur. 
have developed a theory based on perturbation methods. 
that for high Weber number situations the droplet surface is susceptible to 
instabilities. 
aerodynamic deformation the instabilities cause the droplet to shatter. 
instabilities a r e  assumed to beTaylor instabilities. 
the theories and experiment in all the above studies is, however, not good. 

From this model he predicts a droplet diameter for a 12 Harper, Gruber and Chang 
Their model predicts 

When the growth rate of the instabilities is much faster than the 
The 

The agreement, between 

From previous work, it can be seen that detailed information concerning 
the mechanisms of the "bag" type breakup is lacking. No studies of the change 
of the droplet shape similar to that of Engel, for shattering, have been made. 
Furthermore,  the cri t ical  point, when it is certain that a droplet will breakup, 
has not been determined. 
droplet deformation leading to breakup and to establish the necessary shape 
condition to determine if a droplet will oscillate o r  breakup. Based on this 
criterion, a simple model was developed which appears to correctly predict 
the cri t ical  velocity for breakup. 

The objective of this study was to characterize 

Experiment 

(i) Apparatus 

A shock tube was used to create the desired uniform flow conditions. 
The tube was  constructed of seamless aluminum tubing having a n  inside 
diameter of 6.35 cm. The shock tube consisted of four sections: a 183 cm 
driver section; a 170 c m  section located upstream of the test  section; a 35.6 cm 
interchangeable test  section; and a 173 cm section downstream of the tes t  
section. 
light illumination located 180' apart. 
were covered with thin glass. 
of droplets to fall unimpeded through the center of the test section. 
tube was supported by means of steel  rails and rigidly held in place by U-bolts. 
The mounting system assured accurate alignment of the shock tube and a 
minimum transfer of vibration along the tube wall. 
schematically in Figure 1. 

The test  section had a viewing port and light window to permit direct  
Both the viewing port and the light window 

The test  section was designed to permit a s t ream 
The shock 

The shock tube is shown 

The diaphragms used to create the shock waves were of 0.019 mm thick 
The cellophane was supplied by FMC Corporation, American cellophane. 

Viscose Division. The diaphragm was held between two concentric circular 
pieces of aluminum which could then be fitted over the shock tube. 
caused the cellophane to be stretched uniformly resulting in uniform rupture 
of the diaphragm even a t  pressure differences as low as 1.25 psia. 
diaphragm was  ruptured by a needle located in the driven section of the shock 
tube. 
involved in sealing the opening for the needle. 

The holder 

The 

Positioning of the needle in the low pressure side eliminated the problem 

The shock propagation velocity was measured by two time-of-arrival 
pressure transducers and associated electronic equipment shown schematically 
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in Figure 1. 
equal distances upstream and downstream of the test  section and were separated 
by a distance of 74.4 cm. The pulse produced by each transducer was amplified 
by a Hewlett Packard type 46514 amplifier. The amplified signals were then fed 
into the s tar t  and stop gates of a Hewlett Packard 550 MHz Timer/Counter Model 
# 5327A where the time interval between the two transducers was recorded to an 
accuracy of f 1 ps. The r ise  time of each transducer was 1 ps assuring accurate 
triggering of the timer upon the arr ival  of the shock front at each transducer. 

The droplets were produced in a continuous uniform stream by means 
J e t  perturbation was achieved by means of 

The transducers, Atlantic Research type LD- 15, were located a t  

of a n  oscillating capillary device. 
flow oscillation. 
immersible pump powered by an audio oscillator. 
Company, Catalog # 60,307) was driven by a Hewlett Packard Audio Oscillator 
Model #200AB. 
a velocity component only in the vertical direction. 

Suitable flow perturbation was achieved by means of an 
The pump (Edmund Scientific 

The droplets were uniform in size, equally spaced, and had 

The liquid je t  was produced by forcing the liquid through a capillary tube 
with compressed air. 
to 750 pm for water. The driving pressure for all jets was that necessary to 
produce an approximately 1.5 cm long laminar portion in an undisturbed jet .  

(ii) Photography 

The droplet diameters produced ranged between 350 pm 

In order to study deformation, a ser ies  of backlighted pictures taken 

This time interval corresponds to a 
a t  10 pe intervals were needed so that a n  almost continuous history of the change 
of the droplet shape could be obtained. 
framing rate of 105 pictures per second if a high speed cinephotographic technique 
was used. 
to us.  An alternate approach was to take a single picture per test  by means of 
a continuous delay single flash system. 
and droplet diameter the same then a n  equivalent framing rate of lo5 fps could 
be achieved. 

This rate far exceeded the speeds attainable with equipment available 

If the shock strengths were identical 

A schematic of the system is shown in Figure 1. 

A General Radio type 1541 Multiflash Generator functions as a continuous 
delay unit when it is used to produce a single flash. 
producing a single flash after a preset  time delay which can be controlled by 
means of the flash interval control. 
vary from 10 p s  to 1.6 seconds in steps of approximately 5 p s  o r  larger.  
this unit providing both the delay system and flash triggering system, the proper 
t ime interval for each deformation picture was conveniently obtained. 
illumination for the pictures was  supplied by a General Radio Strobotac type 
1538A. Flash duration was 0.8 ps measured a t  1/3 peak intensity. 
flash duration minimized blurring for each picture. 

The unit is capable of 

The delay after the initial triggering can 
With 

The 

The short 

The multiflash unit was triggered by the amplified pulse of a pressure 

The amplified 

The value of the flash delay was  recorded by means of a 

transducer located 0.6 cm upstream of the initial droplet position. 
signal was amplified by Hewlett Packard Type 465A amplifier. 
transducer pulse represented an approximately 30 ps delay after the shock front 
reached the droplet. 
Hewlett Packard Timer-Counter Model # 5327A. The delay was measured from 
the time of arr ival  of the shock front a t  the pressure transducer to the time when 
the stroboscope received its triggering pulse. The time interval was measured 
to within f 1 ps of the actual delay. 

The transducer 

. 
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Results and Discussion 

Observations were made of the response of droplets to various strength 
shocks. 
principal concern in this study was the change in shape of the droplets due to 
the shock-induced flow field. 
of displacement. Several ser ies  of pictures were obtained for various com- 
binations of droplet diameter and shock-induced flow velocity. 
of deformation pictures for a breaking droplet a r e  shown in Figures 2-4. 
droplet shapes in these pictures a r e  assumed to be axisymmetric because of 
the nearly axisymmetric flow field about each droplet. 
and discussions refer  to a meridian plane of the droplet. 

The droplets studied were both breaking and oscillating drops. Of 

Therefore, the droplets were studied independent 

A typical ser ies  
The 

The following measurements 

The negatives for each ser ies  of pictures were examined with an optical 
In this manner, the change of shape of comparator using a 1OX magnification. 

a droplet from that of a sphere could be measured. The front and rear of the 
droplet did not deform in a similar way. 
were made of the deformed droplet height, a ,  and the deformed droplet width, 
b. Some results of the deformation measurements a r e  shown in Figure 5. In 
these figures the droplet height, a ,  normalized with the diameter, D, is plotted 
versus r ea l  time for several  ser ies  of pictures. 

However, for uniformity, measurements 

F r o m  examination of the deformation pictures and from the results of 
the measurements, it was possible to a r r ive  at some conclusions about droplet 
deformation particularly, deformation leading to "bag" type breakup. With the 
understanding obtained from the deformation curves, it was possible to examine 
the deformation pictures and to establish four stages of breakup as well as a 
breakup c r iteria . 

I Each se t  of curves presented in Figure 5 represent the deformation of 
equally sized droplets subjected to various flow velocities. 
5 that when Uo = 2640 cm/sec, the 710 pm diameter droplets do not breakup, 
but begin to oscillate. This curve will be discussed later; the concern of this 
discussion is the deformation leading to ''bag'' type breakup. 

It is seen in Figure 

As a general description, one can simply say a droplet flattens, become6 
hollow, and then bags outward. 
breakup. From examination of various ser ies  of droplet breakup pictures, it 
was possible to describe breakup in a more accurate manner. 
was divided into four stages, and each stage was described in physical terms.  
The end of the fourth stage was reached when the bag, formed by the droplet, 
was broken. 
to reach this point is defined as the breakup time. The four stages of breakup 
a r e  described below. The flow is 
the result of the passage of a shock wave and is, therefore, similar to the flow 
about a sphere set impulsively into uniform motion. Dennis and Walker l3 and 
others have shown that separation occurs almost immediately after the start of 
impulsive motion. All of our photographic observations were made at times 
when the flow had already become separated about the back of the droplets. 

This would, however, oversimplify droplet 

Droplet breakup 

The time, after the passage of the shock wave, for the droplet 

In all cases,  the flow is from left to right. 

Stage 1 is characterized by the immediate flattening of the r ea r  of the 
drop as in Figure 2 when t = 54 ps. 
reaches approximately one half of the initial droplet diameter. 
of the drop is flattening, the front surface remains spherical. 

The flat portion continues to grow until it 
While the back 

~ 

However, its 
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radius of curvature increases. 
of the droplet become straight. 
breakup time. 
droplet . 

The end of this stage is reached when the sides 
Stage 1 lasts approximately 10 %of the total 

The overall effect of this stage is a general flattening of the 

During Stage 1, the shock-induced flow cannot follow the droplet shape 
The separated flow region is a low pressure 

However, the shock wave initially 

and separates from the droplet. 
region at the r e a r  of the droplet and the flow velocity in this region is principally 
in the opposite direction of the main flow. 
imparts an acceleration of about 108 cm/secZ to the droplet. 
is opposed by the droplet mass  which results in a pressure gradient in the 
droplet with the highest pressure in the front. 
droplet approximately equals the pressure in the separation region. 
to this situation, the liquid at the separation region must have an infinite radius 
of curvature o r ,  it becomes flat. As time progresses,  the flat portion grows 
upward from the r e a r  stagnation point. The flattening of the drop is principally 
controlled by surface tension forces while the sole effect of the dynamic force 
is to increase the radius of curvature of the front surface. 

The acceleration 

The pressure a t  the r e a r  of the 
To adjust 

The onset of the second stage of deformation is characterized by the 
appearance of a ridge at the top of the front surface, separating the front from 
the sides. 
effect of increasing the radius of curvature of the front surface. As the ridge of 
the droplet becomes higher, the front surface becomes flat except for a small  
spherical region about the stagnation point. While the front surface is changing 
shape, the r ea r  portion of the droplet loses its flatness and gives the appearance 
of being drawn toward the front surface. At the end of this stage, the r e a r  portion 
of the droplet becomes flat over its entire height. 
deformation process occurs when the droplet appears to have deformed by being 
"squeezed" symmetrically by the flow field. 
of the total breakup time. 
to its minimum thickness. 
in Figures 2 and 3. 

The ridge continues to grow in height and as it grows it has the 

The end of Stage 2 of the 

Stage 2 lasts approximately 2 0 %  
The overall effect of Stage 2 is to flatten the droplet 
This stage corresponds to t = 154 pm to t = 395 ps 

In the second deformation stage, the droplet is more directly reacting 
to the flow field about the droplet than during the first stage. 
the recirculating flow behind the droplet begins to bring mass from the back of 
the drop towards the front. At the same time, the flow about the front surface 
brings mass to the top and bottom of the front causing the front surface to assume 
a larger  radius of curvature. This movement of mass from the front and r e a r  
of the droplet causes the ridge to form and to grow in height. As the ridge 
continues to grow, the recirculated flow possesses a larger  velocity component 
in the negative x direction than the velocity in the positive x direction possessed 
by the incoming flow which is moving almost vertically along the front surface. 
This flow situation causes the ridge to be pushed into the direction of the flow 
resulting in the front surface becoming flat except for a spherical region about 
the stagnation point. Finally, the ridge is forced forward, and the front of the 
droplet appears flat. 

During this stage, 

Stage 3 corresponds to the flat portion of the curve in Figure 5. During 
this stage of deformation, the droplet goes through no noticeable external 
changes, all changes a r e  internal. 
a flat front. 
forward. 

In this stage, the droplet appears to have 
This results from the ridge formed during Stage 2 being forced 

During this stage the region around the spherical portion of the droplet 
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becomes deeper and a greater percentage of the droplet mass becomes located 
a t  the spherical a r ea  about the stagnation point and at the edge of the flattened 
droplet. At the end of this stage, the r ea r  surface of the droplet begins to 
move outward. Stage 3 represents approximately 12% to 15 %of the droplet 
breakup time. 
droplet into a hollow bowl with a hemispherical lump of mass located at the 
center. 

The overall effect of Stage 3 is to transform an almost disk-like 

The third stage of deformation is a stage of internal deformation of the 
droplet. Once the flow causes the ridge to be pushed out past the front surface 
i t  becomes inevitable from observation that the droplet will ultimately breakup. 
When the external flow approaches the spherical region a t  the stagnation point, 
the flow moves around the sphere and is then deflected upward by the solid 
r ea r  surface. The flow, however, cannot move around the droplet r im formed 
from the ridge and must bend into the direction of Uo. 
flow region between the center sphere of mass and the r im of the droplet. The 
circular flow pattern scours mass  from the back internal surface of the droplet 
until the back surface becomes so weak it begins to move in the direction of Uo. 
The dynamic force then causes the onset of bagging. 

This results in a circular 

Stage 4 is the bagging deformation stage of the drop. This stage begins 
when the r ea r  surface of the droplet moves in the direction of Uo. 
movement of the r e a r  surface gives the drop a lenticular shape with the f l a t  
portion facing the flow. 
the droplet the appearance of a bag with a heavy rim. 
a stem may appear. The stem is the result of the mass at the center of the 
drop being so large that it cannot move a t  the same speed as the bag. As the 
bag moves outward, the mass is stretched giving the appearance of a stem. 
Droplet rupture occurs on the bag surface, breaking i t  into small  droplets 
which a r e  swept along with the flow. 
at a later time. 
time. 

The initial 

The r ea r  of the droplet quickly moves outward giving 
In the center of the bag 

The stem and r im breakup into droplets 
Stage 4 represents approximately 50%of the total breakup 

In Stage 4, the rear  surface of the droplet has become weakened in the 
region about the spherical mass  a t  the stagnation point. 
causes the r e a r  region to move in the direction of flow while the heavy r im  
remains relatively still. As the r ea r  of the drop is forced outward, the rear 
surface becomes weaker and as a result the bag moves faster and become# 
stretched. 
and breaks. 
at a time after breakup. 

The aerodynamic force 

The bag surface when stretched becomes susceptible to instabilities 
The r im  and stem are also broken by flow induced instabilities 

The four stages discussed above describe droplet deformation leading 
to "bag" type breakup. 
to the deformation leading to droplet oscillation, it was possible to establish 
a criteria to determine if breakup occurs. The deformation of an oscillating 
droplet is shown in Figure 5 and corresponds to Uo = 2640 cm/sec. 
particular oscillating droplet is subjected to a flow velocity approximately 
corresponding to the critical velocity for a 710 pm droplet. 
were found to deform in a manner similar to that described for a breaking 
droplet in Stage 1 and 2 .  However, once the droplet reaches its minimum 
thickness, b, corresponding to the maximum value of a/D, it rebounds and 
approaches a spherical shape, then overshoots this shape until it reaches a 
minimum value of a/D. 

By comparing the deformation of a breaking droplet 

This 

Oscillating droplets 

The droplet then oscillates about its original spherical 
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shape. 
that the minimum thickness, b, of the droplet is the first clearly noticeable 
difference between a breaking and oscillating droplet and can, therefore, be 
used as the basis of a breakup criterion. 

In Figure 5, the oscillating droplet reaches a maximum value of a/D 
equal to 1.6. This corresponds to a droplet subjected to a flow velocity just 
below the cri t ical  velocity. For  the breaking droplets represented in Figure 
5, the droplet thickness, b, corresponding to the flat portion of the curve, is 
less than the value corresponding to b for  the oscillating droplet. 
the curve corresponding to Uo = 3120 cm/sec for the 470 pm droplet represents 
a droplet subjected to a flow velocity just above the cri t ical  velocity. 
this curve, it is seen that the minimum thickness of the droplet, corresponding 
to the flat portion of the curve, is a/D equal to 1.6. 
that if a water droplet attains a thickness corresponding to a height to diameter 
ratio of about 1.6 or  greater,  the droplet will breakup. 
it would not be necessary to follow droplet deformation through to breakup 
rather  the value of a / D  reached in the second stage of deformation can be used 
to determine if breakup occurs. 
corresponding a/D w a s  used to develop a model that can predict breakup for a 
droplet of a given liquid. 

From our observations on both types of deformation, i t  was shown 

In Figure 5, 

From 

It was, therefore, determined 

Using this cri teria,  

The concept of a critical droplet thickness 

This model is presented in the next section. 

Breakup Model 

When a droplet is deformed by a uniform flow field, caused by a shock 
wave, the front and rear deformation is not symmetric. 
bursting or  oscillating droplet is deformed, i t  reaches a stage of deformation 
when the droplet appears to have been symmetrically deformed. At this stage, 
a nonbursting droplet wil l  start to regain its spherical shape due to surface 
tension, while the front surface of the bursting droplet will continue inward and 
eventually the droplet will breakup by the "bag" type mode. 
of a given liquid both above and below the cri t ical  value of velocity for breakup 
for  varioup droplet diameters a cri t ical  thickness can be determined for  the 
droplet. 
thickness i t  will breakup, but if it has a larger  thickness it will oscillate. 
Therefore, by artificially "squeezing" a droplet to the critical thickness and 
a t  a time t = 0 imposing a uniform flow over the droplet we can, by examining 
forces on the fluid at the Stagnation point of the droplet, determine whether the 
flow velocity is sufficient to cause breakup. 
the cri t ical  velocity, the surface tension force wil l  push the front surface outward. 
Lf the flow velocity is greater than the cri t ical  velocity, the flow will push the 
front surface inward, and this would imply the droplet will breakup. 

HOWeVGr, when a 

By studying droplets 

If the droplet is compressed to a smaller thickness than the cri t ical  

If the flow velocity is less than 

The model considers a droplet in a uniform flow field that has been 
deformed from its spherical shape. 
deformed as an oblate spheroid with the axis of symmetry parallel to the flow. 
A cross  section of the model is shown in Figure 6. 
amount of squeeze imparted to the droplet initially. By examining an element 
of fluid at the stagnation point and determining its motion due to the forces acting 
on the element a critical velocity for breakup is determined. 

The droplet is assumed to have been 

The distance Rot is the 

Consider the fluid in the vicinity of the forward stagnation point. It is 

It is further assumed that the pressure in the drop, acting on 
assumed that some of the fluid will move as a solid body in response to the 
applied forces. 

i 

. . , .. . _. - . . . . . . .  
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surface 2 (see Figure 6 )  is the order of the internal pressure of a spherical 
droplet at rest ,  or  \ 

2 u  
p2 o Ro = P + - ,  1 

where P2 = the internal pressure of the droplet. 

about a sphere of radius, R. 
height about the stagnation point the external pressure simplifies to 

The external pressure distribution on the front surface is equal to that 
By limiting the surface of interest to an infinitesimal 

2 1 2 Pe = Po + i P 1  uo , 
where Uo is the f r ee  s t ream velocity and p1 is the density of the gas. With 
the result  of Equation 2, the pressure on the external surface 1 is given by 

2 u  
p1 = pe + T 3 2  whereR1  = R o  / B  . 

Making use ofEquation 2 we find the pressure difference on our infinitesimal 
element about the stagnation point to be 

A P = P 1 - P 2 = i p  3 

Equation 3 gives the pressure difference on the element in the X-direction. 
The pressure acting on the element in the Y-direction is considered to be zero, 
since the height of the element is considered to remain constant. 

Integration of the equation of motion of a fluid in a particle fixed coordinate 
system in the X-direction yields 

4 

where V = ABc, is the volume of fluid assumed to move as a solid body, A is 
the surface a r e a  and B c  is its length. 
Equation 4 a r e  B = Ro( 1 t e ), U = dB/d t = velocity of volumetric element of 
fluid and Roe = change of distance from the center of droplet to the front surface 
due to deformation. Substitution into Equation 4 gives 

The other quantities appearing in 

In Equation 5 ,  the experimental results obtained by Simpkins and Bales8 and the 
present study a r e  used, which indicates that initially the particle displacement 
can be approximated by 

Xd = K U o  2 2  t / R o ,  

where K e  loe4. 
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Equation 5 can be solved numerically by means of a fourth-order 
Runga-Kutta formula modified by Gil l .  
which must be evaluated by other means. 
of a stationary drop, by making Uo equal to zero, and the resulting equation 
linearized it is found that 

The equation carr ies  one constant, C, 
If Equation 5 is solved for the case 

6 

This equation represents the harmonic vibrations for the drop. 
circular frequency equals that of the frequency of the lowest mode of vibration 
of a spherical droplet. 

I€ C = . 5 the 
. 

An examination of the effect of the constant C in the solution of equation 
6 showed that it principally effected the period of oscillation of the drop, not 
the amplitude of oscillation which change by less  than 5%when C was varied 
from . 125 to .75. 
represents the vibration of a drop when Uo goes to zero. 
be solved once the initial conditions a r e  established. 

The value of C = .5 was therefore adopted so that the model 
Equation 5 can now 

Our model, as stated previously, is based on a critical value of 5 .  
initial value we shall call cc. 
thickness e = ec and as the velocity field is imposed the front surface will respond 
accordingly. 
does not move therefore the slope at this point, E', is equal to zero. 
res t r ic t  the zero slope cri teria we impose the condition that 
5" = 0. Applying this second condition to equation 5 and combining t e rms  
equation 5 becomes -J 

This 
As stated when time t = 0 the droplet has the 

When the velocity is equal to the critical velocity the front surface 
To further 

remains zero o r  

7 

where Uc and 5, a r e  the cri t ical  velocities and displacements. 
denominator in Equation 7 shows the second t e rm to be approximately an order 
of magnitude smaller than the f i rs t  t e rm and is neglected. Equation 7 can then 
be transformed into 

Examination of the 

8 

where ec must always be negative. 

Equation 8 can be used to determine the cri t ical  velocities for droplets 
Our experiments have shown that Ec is the of different fluids, if 5, is known. 

same fo r  a wide range of diameters of droplets if the fluid is the same. The 
time to reach this value will be different owing to the change in period due to 
the change in size but the value reached will be the same. 
need only be found once for each fluid under consideration. 

The critical thickness 

In our experiments the critical value of 6 was found to be . 5 6 .  Sub- 
stitution into equation 8 yields I CI 

5 Ucz D = 3.92 x 10 
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f o r  a water drop in air. 
equation is plotted in Figure 7. Along with this curve a r e  some experimental 
points obtained by Lane and Hanson et al. 
data points as well as the experimental relationships determined in the above 
studies. 

The units of Uc and D a r e  in the cgs system. This 

It can be seen that the curve fits the 

By using the value of tc  for  water and applying it to alcohol, Equation 8 
will  yield the curve plotted in Figure 7. 
data of Lane and Hanson 

Also shown there a r e  the experimental 
et al. 

Examination of Figure 7 shows that our curves more closely approximate 
the data found by Lane 4 . 
Hanson et a1 
radiation pressure which was never turned off. 
pressure to the dynamic pressure is of the order 
pressure can therefore, not be ignored when examining the pressure a t  the edges 
of the droplet. 
drop which then required a larger  velocity to cause droplet breakup. 

This discrepancy may be related to the manner 
5 supported their drops. The drops were supported by acoustic 

The ratio of the acoustic radiation 
14 .  The acoustic 

This could have resulted in an additional cohesive force on the 

C onc lus ions 

Observations of the deformation of oscillating and breaking droplets 
caused by the flow field associated with a shock wave a r e  summarized below. 

1. The deformation leading to breakup by the ''bag" type mode of 
breakup can be divided into four basic stages of deformation: Stage 1, surface 
tension controls the droplet shape; Stage 2, the flow around the droplet causes 
i t  to change shape eventually giving the droplet the appearance of being t'squeesedl'; 
Stage 3, the droplet goes through internal changes which cause it to become 
hollow; Stage 4, the flow pushes the r ea r  of the hollowed droplet outward causing 
it to form a bag and then burst. 

2. 
similar manner. 
extent. 
of a/D which can be related to a cri t ical  droplet thickness, b. 

An oscillating and a breaking droplet will be initially deformed in a 

This observation leads to a breakup criterion based on a cri t ical  value 
However, the breaking droplet will be compressed to a greater 

3. Using the cri t ical  thickness as a criterion for breakup, a model was  
developed which predicts the cri t ical  breakup velocity for any given droplet. 
The cri t ical  thickn ss found for  water was substituted into the model and predicted 
the relationship U>D = 3.92 x lo5 for water. Using the same crit ical  thickness 
fo r  alcohol droplets the model predicts Uc2D = 1 .2  x lo5. 
agree closely with existing experimental data. 
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THE ROLE OF DROP DYNAMICS I N  THE 

PHYSICS OF CLOUDS AND RAIN 

Morris Neiburger, In Young Lee, Elena Lobl, and Lawrence Rodriguez, Jr. 
Department of Meteorology, University of California,  Los Angeles 

Abstract 

Condensation from water vapor onto nuclei  i n  r i s i n g  air  
produces clouds of numerous small drops having very small ter- 
minal ve loc i t ies .  One of the  ways these small drops may grow 
t o  raindrop s ize  is by c o l l i s i o n  and coalescence. Both theo- 
r e t i c a l  computations and laboratory experiments show that the  
r a d i i  of uncharged drops must exceed 20 WII before they are ef- 
fec t ive  col lectors .  

The methods of computation of c o l l i s i o n  e f f ic ienc ies  are 
discussed and the  r e s u l t s  compared w i t h  the r e s u l t s  of exper- 
iments t o  evaluate the co l lec t ion  e f f ic ienc ies  of cloud drops 
with and without e l e c t r i c  charges. 
i n t o  s tud ies  of the formation of rain is discussed. 

The way these da ta  enter 

QUALITATIVE DESCRIPTION OF PRECIPITATION PROCESSES 

Broadly, the processes of formation of clouds and prec ip i ta t ion  may be 
divided i n t o  t h e  dynamic processes, concerned with the motions of air  cut- 
r e n t s  which give rise t o  t h e  general  conditions f o r  the formation of clouds 
and prec ip i ta t ion ,  and the  microphysical processes, concerned with the growth 
of the  individual  prec ip i ta t ion  p a r t i c l e s  from gas phase by condensation and 
from smaller cloud p a r t i c l e s  by c o l l i s i o n  and coalescence. 
course, a strong in te rac t ion  between the  two kinds of processes. The upward 
motions determine the  rate of cooling due t o  expansion and thus control  t h e  
rate a t  which the microphysical processes go on. The release of l a t e n t  heat 
i n  condensation and the drag of t h e  p a r t i c l e s  formed a f f e c t  the  buoyant forces  
which determine the  upward motion. 
s i te  t o  the  microphysical ones, it is convenient t o  discuss  the  processes of 
p a r t i c l e  growth f i r s t ,  and subsequently t o  turn  t o  the la rger  scale s e t t i n g  
i n  which it occurs. 

There i D ,  of 

While the dynamic processes are prerequi- 

It is a f a c t  of common experience t h a t  clouds can remain in the  sky f o r  
Since clouds consis t  of water p a r t i c l e s ,  long periods without precipi ta t ing.  

l iqu id  or so l id ,  which are heavier than a i r ,  t h i s  phenomenon requires  expla- 
nation. 
moving current of air  that is causing t h e  cloud t o  form. 
ward speed i e  not s u f f i c i e n t  but t h e  p a r t i c l e s  wapora te  as they f a l l  from 
the  cloud base i n t o  unsaturated a i r  and vanish i n t o  vapor in a short  distance.  

Usually it is that the  p a r t i c l e s  are being sustained by t h e  upward 
Sometimes t h e  up- 

Measurements show that the  r a d i i  of drops in nonprecipitating l iquid 
clouds are i n  the range 2 t o  20 lnn with the modal radius  usually between 5 

. .  
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s , so that very s l igh t  upward flow of air  would be required t o  o f f se t  t he i r  
fa l l ing .  Further, i t  has been shown that i f  drops of these s i zes  f a l l  out of 
a cloud in to  a i r  with 90 per cent relative humidity they evaporate before 
they go as much as one meter. 

These drops have terminal ve loc i t ies  ranging from 0.05 t o  5 cm 

Rain drops, on the other hand, range i n  r a d i i  from 0.1mm t o  3 m, with 
terminal ve loc i t ies  from 70 cm s-’ t o  9 m s-’. 
stronger drops t h i s  s i z e  w i l l  f a l l  r e l a t ive  to  ascending air and may reach 
the ground before evaporating, even when low humidities prevai l  below the 
clouds. 

I f  the updrafts are not 

The key difference between cloud and precipi ta t ion is thus the pa r t i c l e  
s ize ,  and the central question i n  precipi ta t ion physics concerns the condi- 
t ions under which the pa r t i c l e s  can grow t o  precipi ta t ion size.  

The process of condensation by i t s e l f  can be shown to  be much too slow 
t o  explain the rates at  which precipi ta t ion forms. 
ment from clear air  t o  showers i n  the course of a sUIlDPer day may occur i n  a 
matter of an hour or less. While condensation results i n  very rapid growth 
of drops t o  the s i z e  of average cloud drops, say 10 microns, continued growth 
is progressively slower, and with the number of drops which form there is not 
enough water vapor avai lable  for  millimeter drops t o  be produced by condensa- 
t ion  alone. 

For instance, the  develop- 

The t v o  ways that cloud par t ic les  can grow rapidly t o  precipi ta t ion are 

i f  the cloud drops are 
(1) by co l l i s ion  and coalescence, and (2) by the three phase, o r  Bergeron 
process. 
not of uniform s i z e  the larger  ones w i l l  f a l l  r e l a t ive  t o  the smaller and 
tend 
la rge  drop becomes larger ,  f a l l s  f a s t e r ,  and is more ef fec t ive  i n  col lect ing 
others. 
drops around each other,  there a re  l imitat ions on the i n i t i a t i o n  of t h i s  
process. 

The nature of the  f i r s t  process is obvious: 

t o  overtake and capture them. After col lect ing one small drop the  

But as we shall see, because of the tendency fo r  the air  t o  carry 

1 

The three phase process is based on the f ac t  that drops remain l iquid 
a t  temperatures below O’C, and ice crys ta l s ,  i f  they form, are much fewer in 
number than the l iquid drops.’ Since the equilibrium vapor pressure over ice 
is lower than tha t  over water a t  the  same (sub-zero) temperature, there  is a 
strong gradient of vapor density away from the  l iquid drops toward the ice 
crys ta l s ,  so that rapid t ransfer  of water occurs from the drops, which evap- 
orate,  t o  the c rys ta l s ,  which quickly grow la rge  compared t o  the  pre-existing 
supercooled drops. 
and col lec t  them. Process (2) thus may i n i t i a t e  process ( l ) ,  and the two 
acting together can readi ly  lead t o  the formation of precipitation-sized par- 
ticles i n  subfreezing clouds. In warm clouds which precipi ta te ,  co l l i s ion  
and coalescence alone must be the act ivat ing process. 
evidence that even i n  clouds that extend upward in to  sub-zero temperatures 
frequently precipi ta t ion is i n i t i a t ed  by the  col lect ion process. 

The c rys ta l s  f a l l  r e l a t ive  t o  the remaining small drops 

There is considerable 

Since not a l l  drops that a re  brought together by the i r  r e l a t ive  motion 
coalesce, the processes of co l l i s ion  and coalescence must be considered sep- 
arately.  The co l l i s ion  process involves the dynamics of the flow of the air  1 

! 
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i n  which the drops are imbedded and the dynamics of the drops in response t o  
the drag forces exerted by the air. - 

We shall f i r s t  discuss br ie f ly  why condensation leads t o  the formation 
of clouds with numerous drops too small t o  f a l l  as precipitation. 
shall examine the conditions under which the col lect ion process w i l l  i n i t i a t e  
precipitation. Finally,  we s h a l l  discuss the meteorological fac tors  tha t  may 
produce these conditions. 

CONDENSATION AND THE FORMATION OF CLOUDS 

Then w e  

While homogeneous nucleation requires vapor pressures several  times the 
vapor pressure in equilibrium with a plane water surface, clouds form in the 
atmosphere with r e l a t ive  
is because in the  atmosphere pa r t i c l e s  of haze or dust are always present t o  
serve as nuclei  f o r  heterogeneous condensation. These par t ic les  are predom- 
inant ly  in the  s ize  range 0.005 pm t o  5 m. 
tendency for  smaller pa r t i c l e s  t o  agglomerate rapidly because of Brownian mo- 
t ion.  Unless there  is organized upward motion, par t ic les  larger  than one mi- 
cron tend t o  settle out even though the  e f fec t  of turbulence is t o  diffuse 
them upward. 

humidities very l i t t l e  above 100 per cent. This 

The lower l i m i t  is due t o  the  

Typically the number of pa r t i c l e s  is greatest  i n  the smallest s izes  and 
The  larger  ones and those composed of soluble or decrease rapidly with size.  

at  least wettable materials are most favored as nuclei  for  condensation as 
l iquid drops. Condensation on these nuclei  takes the form of l iquid drops 
even a t  temperatures below O°C. Only a few of the pa r t i c l e s  are ef fec t ive  as 
nuclei  for  deposition of vapor d i r ec t ly  in the  form of ice or  fo r  freezing of 
l iquid drops, and that only a t  temperatures considerably below O°C. We refer  
t o  the latter as ice-forming nuclei  (PI?) and the nuclei  for  condensation at  
s l i g h t  supersaturations as cloud condensation nuclei  (CCN). Ae indicated 
previously, the effectiveness of the three-phase precipi ta t ion process is due 
t o  the small'number of IFN in comparison t o  the number of CCN. The possibil-  
i t y  of the col lect ion process producing precipi ta t ion arises from the f ac t  
that the varying s ize  and composition of CCN lead t o  a dispersion i n  the s i z e  
of drops produced by condensation. 

The rate of growth of a s ingle  drop of radius a growing from a soluble 
nucleus of equivalent radius ao, is  t o  a very close approximation 

3 +-- 
RVT pRvTa msa p 

da FD 

d t  pRvTa 

where F is the  vent i la t ion factor ,  2 is the  compensated diffusion coeff ic ient ,  
p is the density and a the  surface tension of the drop, ps and ms are the den- 
s i t y  and molecular weight of the solute,  &, the gas constant for  water vapor, - e and % (T) the ambient water vapor pressure and its value in equilibrium 
with a plane water surface at  the ambient temperature x, mw the molecular 
weight of water, 6 - (L p a / K  T) (da/dt) is the  increase i n  the temperature of 
the drop above T due t o  the release of latent heat of condensation l,, K is  the 
coeff ic ient  of thermal conduction, n is the  number of ions dissociated per 
molecule of solute ,  and 4 is the osmotic coefficient.  The argument of the 
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exponential is usually sufficiently small for the series erpansion to be lim- 
ited to the linear terms. In this case the growth rate can be expressed ex- 
plicitly, 

da a B Y  
- 9 -  dt a [s - ;+2]  (2) 

2 2 3  e,/p (Rv KT + F D where S = e/es - 1 is the supersaturation, a = F D Rv IC T 
L ea), B = 2 ulp Rv T, and y - n 0 mw a2Pe/ms P-  AIS the drop grows the 
third term and subsequently the second term - the solute term and the curva- 
ture term, respectively -become negl$gible, and for sufficiently large drops 

2 

da Sa 
dt a 
- 9 -  

In the early stages, condensation on 
persaturation is sufficiently large. From 

B Y  

nuclei will occur only if the su- 
equation (2) the condition is 

-3 ' s > - -  
a a  

and since y is proportional to the nucleus volume, the supersaturation re- 
quired is lower for larger CCN than for mnaller. 
nuclei the condition is S > B/ao, and the same conclusion holds.) 

condensation on the large nuclei will keep the supersaturation from rising to 
the high values required for condensation on the small ones. 
larger and more soluble CCN are activated and form cloud drops. 
number of nuclei that are effective is usually in the range 50 to 1000 per 
cubic centimeter. 

(For insoluble but wettable 

If, as is always the actual case, CCN of various sizes are present, 

Thus only the 
Even so the 

With more than one drop present the conditione under which equation (1) 
is valid are not strictly met. However it has been demonstrated that even 
with 1000 drops per cubic centimeter the drops are sufficiently far apart rel- 
ative to their size not to influence each other's growth directly, but only by 
affecting the degree of Supersaturation. 

Once the drops become large enough, the larger drops grow less rapidly 
than the smaller, as shown by equation (3). 
drop sizes becomes narrower and the rate of drop growth decreases as time goes 
on. Between these effects and the depletion of available water vapor the 
drops that are formed by condensation never are larger than a few tens of mi- 
crons in radius. 

Thereafter the spread of cloud 

As an illustration of the growth of cloud drops on a typical spectrum of 
CCN, Figure 1 shows the results of a computation carried out by Neiburger and 
Chian (1960) several years ago. The curve labeled "t = 0" shows the ini- 
tial distribution assumed for the nucleus sizes. It is based on the summa- 
ries of particle size measurements reported by Junge (1963). For convenience 
all the nuclei were assumed to be NaC1. The air was assumed initially to have 
temperature 16'C and relative humidity 75 per cent at 1000 mb pressure, and to 
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cool adiabat ical ly  as it rose with v e r t i c a l  ve loc i t ies  approximating those 
measured i n  cumulonimbus clouds (Byers and Braham, 1949). Figure IA shows 
the var ia t ion  with time of the  sa tura t ion  r a t i o  and of the drop sizes f o r  the  
i n i t i a l  s i z e s  i n t o  which the  nuclei  were grouped, and Figure 1 B  shows the 
drop s i ze  d is t r ibu t ions  a f t e r  various elapsed times. 
midity s l i g h t l y  exceeded 100 per cent the drops on nuclei  0.1 pm or larger  i n  
radius  grew rapidly,  while those on smaller nuclei  did not continue t o  grow. 
Shortly a f t e r  the  cloud formed, the separation between cloud drops and inac- 
t ivated nuclei  became evident,  with modal radius  of the cloud drops about 7 
pm. 
t o  9 km, the  modal radius  was 20 pm. 
timeter that were act ivated,  about 70 had r a d i i  greater  than 16 m, but  only 
about one per l i ter  was  greater  than 22 pm. 

Once the r e l a t i v e  hu- 

A t  the  end of the  computation, corresponding t o  a r i s e  of the a i r  parcel  
Of the  approximately 100 per cubic cen- 

Similar computations with various realistic assumptions about CCN spec- 
tra and cooling rates have shown t h a t  condensation of l iqu id  drops does not 
produce prec ip i ta t ion ,  even f o r  very deep clouds. It has been found, fur ther ,  
that turbulent f luc tua t ion  i n  updraft  ve loc i ty  and var ia t ions i n  nucleus com- 
posi t ion do not lead t o  a broadening of the  spectrum produced by condensation. 
However, the introduction of addi t ional  nuclei  during the entrainment of envi- 
ronmental air i n t o  the  cloudy updraft  and the penetration of successive ther- 
mals through their  predecessors appear t o  be able t o  explain the development 
of s u f f i c i e n t l y  disperse  drop s i ze  d is t r ibu t ions  t o  i n i t i a t e  the co l lec t ion  
process. 

THE THEORETICAL COMPUTATION OF COLLISION EFFICIENCY 

As a drop f a l l s  the air  ahead of it is pushed out of the way, and i f  a 
smaller droplet  is contained i n  t h a t  a i r  i t  likewise w i l l  tend t o  be carr ied 
out of t h e  path of the la rger  drop. 
the viscous drag exerted by the  air may not p u l l  it f a r  enough, and i f  the 
droplet  is not too f a r  from the  axis of f a l l  of the drop a c o l l i s i o n  may oc- 
cur. The r a t i o  of the number of droplets  that c o l l i d e  t o  the number in the 
volume swept out by the  drop is ca l led  the  c o l l i s i o n  eff ic iency Ea. 
l y ,  the  f r a c t i o n  of the  droplets  that the  drop co l l ides  with t h a t  coalesce 
with it is cal led the  coalescence eff ic iency Eg, and the  r a t i o  of the  number 
of droplets  with which the drop coalesces t o  the number i n  the volume it 
eweeps out is cal led the co l lec t ion  eff ic iency 8. 

The theore t ica l  evaluation of E may be t reated adequately by consider- 
ing the dynamics of two r i g i d  spheres' moving i n  a viscous medium. 
s i ze  of drops we are considering both the departures from spherical  shape and 
the i n t e r n a l  c i rcu la t ions  are negligible.  Similarly,  the drops are generally 
f a r  enough apart  f o r  the  influence of the other drops on the motion of an in- 
te rac t ing  p a i r  t o  be ignored. Nevertheless, because of the non-linear terms 
i n  the Navier-Stokes equations and t h e  d i f f i c u l t y  i n  sa t i s fy ing  the boundary 
conditions on the  surfaces of two bodies the  problem is not amenable t o  solu- 
t ion  without assumptions or  approximations. 

Because of the  i n e r t i a  of the  droplet ,  

Similar- 

Obviously, E = Es Eke 

For the 

The problem of computing Es involves two phases, f i r s t  t o  determine the  
flow f i e l d  of the air around the two drops, regarded as r i g i d  spheres, and 
from t h i s  the  force exerted by the a i r  on the  drops, and second, t o  compute 
the t r a j e c t o r i e s  of the drops i n  response t o  these forces. 
t r a j e c t o r i e s  €or d i f fe ren t  i n i t i a l  displacements of the small drop from the 

By computing t h e  

! 
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ver t i ca l  through the center of the la rge  one the grazing t ra jec tory  tha t  
brings t h e m  j u s t  in to  contact can be determined. 
m e n t s  f o r  the grazing t ra jectory is Yc and the r a d i i  of the la rge  and small 
drops are A, a, respectively,  

I f  the i n i t i a l  displace- 

where y - YcfA and p - afA. 
cal led the linear co l l i s ion  efficiency. 

The non-dimensional c r i t i c a l  displacement 

One simplification, valid f o r  very small p, is the assumption that the 
flow pat tern is determined only by the la rge  drop and is unaffected by the 
small one. 
rigorously because of the non-linearity of the Navier-Stokes equations. 
Using an analog computer, Langmuir and Blodgett (1946, Langmuir 1948) carried 
out the coquta t ione  fo r  two limiting cases for  which the equations can be 
l inearized, very low Reynolds numbers, fo r  which the i n e r t i a  terms can be 
neglected, and very high Reynolds numbers, fo r  which the viscous forces can 
be ignored and potent ia l  flow obtains. 
of most interest i n  cloud physics they adopted an interpolation scheme. 

Even with t h i s  assumption the flow f i e ld  cannot be determined 

For the intermediate values tha t  are 

Fonda and Herne (IIerne 1960) repeated the computatione with a d i g i t a l  
computer. 
they &e was t o  allow f o r  the f i n i t e  size of the  small drop when determining 
whether or  not there was a col l is ion.  
ueed the Stokes l a w  for  the  drag exerted by the  air on the small sphere. 

Apart from the improved computational accuracy the only change 

Both they and Langmuir and Blodgett 

When the s i z e  of the  small drop is comparable t o  that of the large one 
the e f f ec t s  of both on the flow pat terns  must be considered. 
(1957) were the f i r s t  t o  attempt t o  do so. 
t o  each sphere separately t o  obtain the flow pat tern fo r  the two moving 
spheres. 
those that would be experienced by each sphere i f  it is moving with its own 
velocity r e l a t ive  t o  the flow induced by the other. Since the Oseen approxi- 
mation is poor close t o  the drops, where the interact ion of the drops has most 
influence on the co l l i s ion  efficiency, the values of E obtained by Pearcey 
and H i l l  were not re l iab le .  

Pearcey and H i l l  
They superposed the Oseen flow due 

It can be shown that the  resul t ing drag forces  are equivalent t o  

S 

For suf f ic ien t ly  emall drops fo r  the Stokes l inear iza t ion  t o  hold 
Hocking (1959) obtained solutions that f i t  the  boundary conditions a t  the 
surfaces of the two drops rigorously. 
able  t o  superpose solutions for  spheres moving along and perpendicular t o  
the i r  l i n e  of centers t o  obtain the solution fo r  r e l a t ive  motion i n  an arbi- 
t ra ry  direction. H i s  solutions were expressed i n  terms of series of which he 
was  able  t o  determine only a few terms i n  evaluating the drag forces. Davis 
and Sartor (1967) and subsequently Hocking and Jonas (1970) obtained improved 
solutions for  the forces i n  t h i s  case. 
t ions are valid however close together the  drops come col l i s ions  cannot occur 
because the force opposing the i r  approach is inversely proportional t o  the 
distance between the i r  surfaces. Once the distance becomes colnmensurate with 
the mean f r ee  path of the molecules of a i r  viscous theory cannot apply. 
(1972) has considered the gas k ine t ic  e f f ec t s  and found that they lead t o  

Because the equations are l inear  he was 

They found that i f  the Stokes equa- 

Davis 
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somewhat larger values of Es for  A < 20 ~.lm than those found by Davis and 
Sartor and Hocking and Jonas. 
evaluations of E 

It is presumed tha t  these r e su l t s  are the best  
for  very s m a l l  A. s 

For larger drops, for  which Stokes' approximation does not hold, most 
of the recent evaluations of Es have used the superposition technique with 
numerical solutions of the complete Navier-Stokes equations for  the flow 
f i e lds  induced by the individual drops (Shafrir and Neiburger 1963, -1964; 
Neiburger 1967; Shafrir  and Gal-Chen 1971; Lin and Lee 1973; Beard and Grover 
1974). The exception is the work of Klett (1968) and Klett and Davis (1973), 
i n  which an attempt is made t o  f i t  the  boundary conditions a t  the surfaces of 
the two spheres with a solution of Carrier's modification of Oseen equations. 
It is interest ing and reassuring that the various procedures, while leading 
t o  some differences in the  values of Ea,  do not give markedly d i f fe ren t  re- 
su l t s .  

involve assumptions and 
va l id i ty  with experiment- 

We s h a l l  discuss our experiments using the UCLA Cloud Tunnel later, 

Because a l l  the theoret ical  evaluations of E s approximations it is desirable  t o  check the i r  
a1 data. 
and in the next section present a comparison of various computational values 
of Es with earlier experimental resu l t s .  

COMPARISON OF COMPUTED COLLISION EFFICIENCIES 
WITH EARLIER EXPERIMENTAL RESULTS 

The set of co l l i s ion  eff ic iencies  computed over the most complete range 
of cloud drop s izes  is tha t  of Shafrir  and Neiburger (1963, 1964) and 
Neiburger (1967). An extended and refined version, which we s h a l l  r e f e r  t o  
as "modified S-N" values, i o  used here. As we s h a l l  see, these values cor- 
respond f a i r l y  closely t o  the r e su l t s  of other computations and f i t  the  re- 
s u l t s  of experiments. 

For convenience in interpolat ing t o  other drop s izes  and in using the  
values in drop growth computations i t  is convenient t o  have an analyt ic  ex- 
pression fo r  the co l l i s ion  efficiency. Berry (1967) presented a formula tha t  
f i t  the  S-N values f a i r l y  w e l l  and Scott and Chen (1970) developed a somewhat 
less complicated expression. 
mulas do not include the values due t o  wake ef fec ts  fo r  nearly equal drops. 
Lee (Neiburger, Lee, Lob1 and Rodriguez, 1974) has developed a simpler equa- 
t ion  that f i t s  c losely the modified S-N values over the en t i r e  range. 
values shown in the following are those obtained from tha t  equation. 

In  addition t o  being very complicated the i r  for- 

The S-N 

Experiments give the value of the col lect ion efficiency E ra ther  than 
They would be expected t o  be the same only if 

(1960), Woods and Mason (1964, 1965), Beard 

the co l l i s ion  efficiency Ea. 
the coalescence efficiency 
been carried out by P ickne t t  
(1968, 1970), and Beard and Pruppacher (1968, 1971). In most of these exper- 
iments the col lector  drops were generated by a vibrating hypodermic needle, 
which may have led t o  them having some e l ec t r i c  charge. 
used in determining E gave a lower bound rather  than a precise  value. 
the computed values of Ea, which we s h a l l  designate Ec, are subject t o  uncer- 
ta in ty  because of 
values of E, which we s h a l l  c a l l  Ex, are likewise uncertain because of experi- 
mental d i f f i cu l t i e s  and the difference between the conditions of the 

Ek is unity. Experimental evaluations of E have 

Usually the technique 
Jus t  ae  

assumptions and approximations, the experimental 

.. 
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experiments and those i n  natural  clouds. 
t ione using d i f fe ren t  approximations yield nearly the same values of Ec, and 

puted values. We may thus be inclined t8 conclude that fo r  those experimen- 
t a l  conditions Ea u 1  and the computed Ec are good approximations of E. 

Experiments using the UCLA Cloud Tunnel t o  evaluate E have given values 
of Ex considerably smaller than Ec for  the same values of A and a (Neiburger, 
Levin and Rodriguez, 1972; Levin, The dif-  
ference between these experimental r e su l t s  and the earlier ones was  a t t r ibu ted  
t o  the  poss ib i l i ty  that i n  the cloud tunnel, i n  which atmospheric conditions 
are more closely simulated than i n  earlier experiments, the coalescence e f f i -  
ciency Ell is much smaller than one when the col lector  drop has no e l e c t r i c  
charge. 

In  t h i s  br ief  presentation i t  is impossible t o  review a l l  of the  re- 

As we s h a l l  see, several  computa- 

that are close t o  the a number of experiments give values of E Cam- 

Neiburger and Rodriguez, 1973). 

su l t s .  
e u l t s  of several  computations and some experiments are available.  
of Ec and Ex are shown fo r  fixed values of A as a function of p. 

the Stokes approximation w a s  used, two computed with the superposition tech- 
nique, and one i n  which the modified Oseen approximation was used. 
three computations give generally higher values of Ec than the f i r s t  three,  
but fo r  the  most par t  the shapes of the  cumes are 
not depart radical ly  from each other. 
s u l t s  (Piclmett 1960) are available fo r  t h i s  value of A. 
Woods and Mason [1964] f o r  A = 33.5 pm correspond closely to  Piclmett 's  fo r  
30 w.) 
resu l t s  agree be t te r  with Picknett 's  experiments over the anall range of p 
fo r  which they were performed than the later, more accurate, computations by 
Davis and Sartor and by Hocking and Jonas. Indeed, they also f i t  them be t t e r  
than the other three computational resu l t s ,  which take account of the non- 
l inear  tefmB and should be be t te r  even for  t h i s  s m a l l  a value of A. However, 
since the experiment gives a lower bound fo r  E ra ther  than a precise value, 
i t  is possible that the t rue  value of E is closer t o  the Klett-Davis, Lin-Lee 
and S-N values. 

In  Figure 2 data  are compared for  some values of A for  which the re- 
The values 

For A = 30 pm (Figure 2A) six computations are available,  three i n  which 

The latter 

similar and the  values do 

(The r e su l t s  of 
Only one series of experimental re- 

Of the  computations using the  Stokes approximation Hocking's earlier 

For A = 50 (Figure 2B) the two other computations give s l i gh t ly  
higher values than the modified S-N ones as represented by the analyt ic  for- 
mula, but the experimental values, which are avai lable  only f o r  la rge  p, are 
closer t o  the S-N. 
the Klett-Davis computation is everywhere above the S-N curve but the experi- 
mental points f i t  the  S-N values. 
lustrated,  are the same as for  70 pm. 
computations are not available,  the experimental points a l so  f a l l  almost ex- 
ac t ly  on the S-N curve. 

using the 
superposition technique with f low f i e lds  given by Le Clair, e t  11 (1970), and 
compared the r e su l t s  fo r  f a i r l y  large A and small p with experiments Beard 
carried out using the UCLA wind tunnel. In  Figure 2D t he i r  data  fo r  two val- 
ues i n  the range .that our computations apply are compared with ours. 
ranges covered by the probable e r rors  a r e  shown by the shaded rectangles, and 

Similarly, f o r  70 pm (Figure 2C) the  curve representing 

The r e su l t s  fo r  40 pm and 60 pm, not il- 
For 80 pm and 90 m, fo r  which other 

Beard and Grover (1974) carried out new computations of E 

The 
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it is seen that the i r  r e su l t s  f a l l  i n  the upper corners of the experimental 
error  rectangles and ours i n  the extreme lower corners. 
tha t  for  small p and large A the correct values of E may be somewhat larger  
than our computed values. 

This again suggests 

In  summary, the r e su l t s  of the various computations are qui te  similar,  
and the available experimental data  on the whole agree w e l l  with the modified 
S-N computations. It is therefore suggested provisionally that the S-N val- 
ues of Ec be used for  the co l l i s ion  efficiency of drops i n  the range 20 t o  
140 pm. 

CLOUD TUNNEL EXPERIMENTS WITH COLLECTOR DROPS 
HAVING LITTLE OR NO ELECTRIC CHARGE 

In  our cloud tunnel experiments the conditions of natural  col lect ion i n  
clouds are simulated more closely than i n  other experiments i n  several  ways. 
The air  rises through the tunnel a t  the speed of the terminal velocity of the 
col lector  drop, so that it remains motionless as the cloud of droplets is 
carried upward i n  the air stream. Thus, r e l a t ive  t o  the air  the col lector  
drop f a l l s  a t  its terminal veloci ty  through the cloud of droplets tha t  are 
a l so  f a l l i ng  a t  the i r  terminal veloci t ies .  
about 100 per cent, so that evaporation or  condeneation plays l i t t l e  or no 
role.  The cross section of the tunnel is l a rge  enough so t h a t  there is prac- 
t i c a l l y  no influence of the walls on the flow pat tern near the center. There 
is prac t ica l ly  no externally induced turbulence. 

The ambient re la t ive  humidity is 

To produce col lector  drops with essent ia l ly  zero e l ec t r i c  charge a 
grounded hypodermic needle was used i n  our f i r s t  series of experiments. 
later experiments a drop generator was  constructed, using modifications of 
the design by Abbot and Cannon (1972), i n  which the voltage on a hood or  
shield determines the  charge on the drop. 
is prac t ica l ly  zero. 

For 

With zero hood potent ia l  the charge 

In Table 1 the average values of Ex for  uncharged col lector  drops, 
grouped according t o  the range of the i r  
pared with the computed co l l i s ion  efficiency Ec. 
of A in the  smallest s i z e  range, Ex is much smaller than E. In  previous dis- 
cussions of some of these data  
Levin, Neiburger and Rodriguez 1973) i t  was suggested that the explanation of 
the difference was tha t  the coalescence eff ic iency Eg was  small for  the con- 
d i t ions  of the experiments. these r e su l t s  and those 
of previous experiments was a t t r ibu ted  t o  the poss ib i l i ty  tha t  in the  earlier 
experiments the col lector  drops had suf f ic ien t  charge t o  overcome any inhibi- 
t ion of coalescence. 

r a d i i  A and s i ze  r a t i o  p, are com- 
Except for  a few instances 

(Neiburger, Levin and Rodriguez 1972; 

The difference between 

It was  reasoned that i f  t h i s  is t rue  an e l ec t r i c  charge could be applied 
t o  the col lector  drops tha t  would be suf f ic ien t  t o  raise the coalescence e f f i -  
ciency t o  unity without being so large that i t  would a f f ec t  the motion of the 
drops and thereby increase the co l l i s ion  efficiency. The var ia t ion of E with 
drop charge Q would then be such that i t  would f i r s t  increase with Q u n t i l  EQ 
reached unity, then remain constant a t  E u n t i l  Q became so l a rge  that Ea 
would be affected. 
the cloud tunnel with small col lector  drops having various magnitudes and 
polar i t ies  of electric charge. 

To test t h i s  hypothehe experiments were carr ied out i n  
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CLOUD TUNNEL EXPERP(ENTS WITH CHARGED COLLECTOR DROPS 

The hypothesis postulated a t  the end of the preceding section may be 
For each value of A and a there  ex is t  two values of expressed as follows: 

charge Q,, Q, such that when the charge on the col lector  drop is smaller than 
Eg 1; when Q, Q 5 QZ, Ea - 1, Es - Ec; and when Q > Q,, 

- -A- 

Ql * Es > Ec. 

The e f f ec t s  on Es of charge on a col lector  drop interact ing with un- 
charged droplets  has 
only fo r  the  case of A - 30 pm and a - 5,pm. 
crease i n  EB began when Q exceeded 6'10 
increase 
used in our experiments, some idea of Q, may be obtained from the computa- 
t ions they carr ied out with charges on the collected drops as w e l l  as the  
collector.  For charges with opposite sign the threshold charge on a 30 pm 
col lector  drop interact ing with 10 pm droplets bearing charges 119 as large 
was about 2*10-~  esu. 

been evaluated previously (Semonin and Plumlee 1966) 
They reported tha t  a s l i gh t  in- 

esu; t he i r  graph shows very l i t t l e  
fo r  Q less than 3'10-6. For a - 10 pm, the  value frequently 

e 

The influence on E of a charged drop col lect ing uncharged droplets 
would be due t o  the  dipofe moment of the  droplet  induced by the  f i e l d  due t o  
the charged drop. Since the induced dipole moment is a function of the  dis- 
tance between the drops, it appears sa fe  t o  assume that the e f fec t  w i l l  be 
s ignif icant  only when the drops are close together, and tha t  the charge re- 
quired t o  a f f ec t  the co l l i s ion  eff ic iency w i l l  therefore be considerably 
larger  than that affect ing it when both of the drops are charged. 
consideration w e  ant ic ipate ,  fo r  example, that 30 pm radius col lector  drops 
f a l l i ng  through a cloud_ of uncharged 10 wu droplets would have t o  bear 
charges of at  least 10 ' esu in order that Es should be affected. 

For estimation of Q, the experiments of Jayaratne and Mason (1964) are 
the most informative. 
plane or wavy water surface. The smallest drop for  which they evaluated the  
cr i t ical  charge required t o  cause coalescence was 139 pm i n  radius; fo r  t h i s  
s ize  the cri t ical  charge was about 6*10-' esu. Except for  la rge  impact ve- 
l o c i t i e s  the c r i t i c a l  charge increased with radius. 
coalescence of a charged drop w i t h  an uncharged water surface (corresponding 
t o  an uncharged much la rger  drop) and our case of a charged drop coalescing 
with an uncharged smaller droplet  is not clear, but it seems safe  t o  expect 
that Q, would have the same general order of magnitude. From t h i s  discussion 
we see tha t  there  is a poss ib i l i ty ,  but not a cer ta inty,  that the required 
condition, tha t  Q, 

We shall not discuss in d e t a i l  i n  t h i s  paper the various experimental 
d i f f i c u l t i e s  that were encountered i n  attempting t o  evaluate the col lect ion 
efficiency of small col lector  drops (A 40 m) i n  the cloud tunnel. They in- 
clude the f ac t  that charac te r i s t ics  of the cloud, such as l iquid content and 
droplet  s ize ,  may change as the air  speed i n  the tunnel is increased t o  keep 
the growing drop stationary.  The l iquid content was measured continuously, 
but not the cloud drop s i z e  spectrum. Similarly, the charge on the col lector  
drop was known when i t  w a s  generated, but it might have changed due t o  col- 
l ec t ion  of ions i n  the  a i r  stream or charges on the  collected dropl_ets, al- 
though the charges on the droplets were measured t o  be less than 10 ' esu, SO 

that the small number of them that were collected i n  any one experiment would 

From t h i s  

They studied the coalescence of drops impinging on a 

The re la t ion  between 

Q,, is sa t i s f ied .  

. . .. - . . . . . - . . . .. . . - -.  . .. . .. 
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not a f fec t  the charge on the col lector  drop s ignif icant ly .  
s i s t en t  decrease i n  the rate of col lector  drop growth with time for  a l l  the 
experiments. 
the collector drop was being neutralized. 
droplets became smaller as the air  speed increased. 

There was a con- 

One possible explanation of t h i s  decrease is that the charge on 
Another is that the s ize  of the 

When E is large and the cloud suf f ic ien t ly  dense the equation for  con- 
tinuous growth can be used t o  evaluate it. Solved for  E t h i s  equation is 

- 
4 p A2 AA 

(5 )  
Y -  

R (A + a)2  fV - v) A t  

where p is the  density of the l iquid (one for  water), R the mass of l iquid 
per un i t  volume of the cloud, V and v the f a l l  ve loc i t ies  of the drop and 
droplet ,  and AA is the change i n  col lector  drop s ize  in A t  seconds. 
slope A A l A t  may be determined from an analyt ic  expression f i t t e d  t o  the curve 
representing the var ia t ion of observed drop s i ze  with time, or an average 
value can be computed from the difference in radius a t  the beginning and end 
of a time in te rva l  A t .  

The 

When the col lect ion efficiency is so small that even with a dense cloud 
only a few droplets are collected during the experiment the continuous growth 
equation cannot be used. 
the number of droplets per uni t  volume of the cloud (N = 3R/4 ?r;;f p),  the  
col lect ion efficiency is approximately 

If  n is the  number of droplets collected and N is 

( 6 )  
2 E n/z (V - v) ?r (A + a )  A t  . 

The value of n can in some cases be determined by counting the s teps  i n  the 
record of the  tunnel speed as i t  is changed when the drop grows by collection. 
I f  the s teps  are not suf f ic ien t ly  d i s t i n c t  and n is suf f ic ien t ly  large t o  per- 
m i t  assuming that  the average volume of the collected droplets is representa- 
t i ve  of the e n t i r e  cloud, n can be computed from the change in volume of the 
col lector  drop: 

where Ai, Af are the r a d i i  of the col lector  drop at the beginning and end of 
the time in te rva l  A t .  Equation ( 6 )  becomes 

E z 4 p AA3/3 E (A + a)2  (V - v) A t  . (7 1 

This equation is equivalent t o  equation ( 5 )  i f  the droplets  are collected SO 

frequently that A t  can be t reated as an infinitesmal. 

When equation (6) is used with small n, there  is uncertainty i n  the val- 

I f  E is the  probable e r ror  in A t ,  it can be shown that the prob- 
ue of E because of the va r i ab i l i t y  of in te rva ls  between successive col lect ion 
of droplets. 
able  error  i n  E is approximately E E l A t .  

In  Figure 3A the  r e su l t s  of one series of experiments, with A in the 
range 20 pm t o  23 pm and a about 10 m. For A t h i s  small the col lect ion 

I 
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eff ic iency with zero charge is  zero. 
value of E ( the computed value of Es). It is seen that the experiment ap- 
pears t o  corroborate the hypothesis: Ex increases with charge 
Q, reaching the  value of Ec a t  Q - 0.7'10-' esu, and then remains constant 
u n t i l  Q exceeds 1.2'10 ' esu. 
geometric col lect ion efficiency when Q exceeds 2'lO-' esu. 
tha t  fo r  Q smaller than Q, - 0.7'10-' esu the  coalescence efficiency Et is 
less than one, that i t  reaches unity when Q attalnu that value 
charge does not a f f ec t  Es u n t i l  Q is greater  than Q2 - 1.2'10-' esu. 

r ider  the hypothesis demonstrated. 
lected are considered the  evidence is f a r  from conclusive. 
3B the r e su l t s  of a l l  our experiments with drops in  that range are shown. 
The same general trend is seen, with Ex smaller than Ec fo r  small charge and 
increasing with Q, but fo r  some fo r  some of the  series 
ceeded fo r  much smaller values of Q than i n  Figure 3A. 
of differences i n  the experimental parameters that would produce the differ-  
ences i n  the resul ts .  

The x on the  ordinate axis shows the  

Then i t  increases and becomes larger  than the 
This suggests 

but tha t  the 

I f  a l l  the experimental data conformed t o  t h i s  pat tern w e  would con- 
However, when a l l  the  da ta  we have col- 

Thus, i n  Figure 

Ec is reached and ex- 
We are not aware 

Figure 3C shows r e su l t s  fo r  A i n  the range 26 m t o  29 with a 10 
pm. 
there  is some scatter ,iLI the  resul ts .  In  Figure 3D the data  for  A i n  
the range 32-35 m, a - 10 m are s&wn. It appears tha t  for  t h i s  s i ze  Q, 
and Q2 are both greater than 2.5'10 ' esu. 

of the posi t ive charge cases (solid symbols) was suf f ic ien t ly  d i f fe ren t  from 
the negative for  separate l i nes  t o  be drawn fo r  them. 
with increasing charge is more rapid fo r  the smaller values of A, as expected, 
but the leveling o f f ,  insofar as it is apparent i n  the data ,  does not occur 
a t  the values of E corresponding t o  the  computed co l l i s ion  eff ic iencies .  
comparing Figure 4 with Figure 3 we see that fo r  the same charge and range of 
A, Ex is considerably larger  fo r  a 

clear that Ex Increases with Q and that for  a specified charge the effect is 
la rger  the 
data  of the plateau that would occur i f  Q, < Q,. I n  some instances the  pla- 
t a u  o r  a leveling off occurs a t  another 

The data  suggests that Q, is 1.3'10 ' esu and Q2 is 2'10 ' esu. However 

Figure 4 shows-data f o r  three ranges of A with = 15 m. The behavior 

The increase of Ex 

By 

15 lnn than fo r  a - 10 m. 
The data  displayed here is suggestive ra ther  than conclusive. It is 

smaller the value of A. There are indications i n  some of the 

value of Ex. 

Charge could a f f ec t  Et i n  two ways, f i r s t l y  by reducing the time of 
thinning of the  a i r  f i lm as the drops approach each other,  and secondly by 
changing the  thickness a t  which surface rupture and coalescence takes place. 
The d e t a i l s  of these e f f ec t s  cannot be studied by cloud tunnel experiments, 
but by careful  control of the various parameters it may be possible t o  dis- 
t inguish between the fac tors  that a f f ec t  the thinning and those that influ- 
ence the surface rupture. 

PIPLICATIONS OF COLLECTION EFFICIENCY ON THE PRECIPITATION PROCESS 

While the information concerning the e f f ec t  of charge on col lect ion ef- 
f ic iency is of in t r in s i c  i n t e re s t  i n  shedding l i gh t  on the co l l i s ion  and co- 
alescence processes, the  data  so f a r  does not appear t o  c lear  up the i n i t i a t i o n  

__.._-______.. _._ ., . . .. .,... . . . ~. . . . . . . . .  
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of warm rain.  
the order of lo-' or  lo-' esu, but the available data  (e.g. Webb and Gum, 
1955; Takahashi, 1972) indicate  that natural  cloud drops bear much smaller 
charges. 

We have seen that the charge required for  influencing E is of 

There have been a number of s tudies  t o  determine the circumstances un- 
der which condensation can produce suf f ic ien t ly  large drops t o  start the  
col lect ion process. 
must be drops a t  least 20 pm in radius for  it t o  begin, and the cloud tunnel 
experiments indicate  that the minimum s i z e  may be as much as 30 l.un or  even 
40 pm unless the drops carry unusually high e l ec t r i c  charges. 
that have been shown to  r e su l t  in the  growth of large drops by condensation 
are (1) the presence of abnormally large soluble nuclei  - giant salt  pra t ic les  
5 
that the water vapor is shared by re la t ive ly  few drops; t h i s  is sometimes t rue  
of maritime air in contrast  t o  continental  air; and (3) occurrence of entrain- 
ment or a succession of penetrative thermals in which competition between con- 
densed drops and newly activated CCN brought in from the environment leads t o  
a wide drop s i z e  spectrum. 

The co l l i s ion  efficiency computations suggest that  there 

Among the  ways 

o r  more in equivalent radius -; (2) presence of unusually few CCN, so 

To see how sensi t ively cloud drop growth by col lect ion depends on the 
drop s i z e  dispersion, Chin and Neiburger (1972)  carried out some computations 
of the  evolution of drop spectra with d i f fe r ing  character is t ics .  The gwern- 
ing equation is 

a t  - 3 i n ( m )  n(M-m) K (m,M-m) dm 
0 OD 

- n(M) n(m) K (m,M) dm . 
0 

In t h i s  equation the f i r s t  in tegra l  on the r igh t  s ide  represents the -xrease 
in number density n(M) of drops of mass M due t o  col lect ion of drops of mas8 
m by drops of mass M-m, and the second in tegra l  is the  decrease i n  n(M) due 
t o  col lect ion of other drops by drops of mass M. 
kernel, is given by 

K (m,M), the col lect ion 

K (m,M) = 'R (A+a12 E ( V u )  . 
For the col lect ion efficiency they used the S-N computed values of Ea, 

and for  the droplet  spectra they used both Gaussian dis t r ibut ions and 
Khrigian-Mazin (K-M) dist r ibut ions,  the latter given by 

2-6  n (a) = (1.45 !k a /a ) exp (- 3 a/;) 

where 2 is average radius. 
the observed d is t r ibu t ions  in a var iety of types of clouds. 

d r i g i a n  and Mazln found that t h i s  expression f i t s  

Chin and Neiburger's computations showed that fo r  d i s t r ibu t ions  having 
the l iquid content, mean volume radius, and r e l a t ive  dispersion the K-M spec- 
tra, because of their skewness, led t o  more rapid development of l a r e  drops 
by the col lect ion process. In  the K-M expression the average radius a deter- 
mines both the modal radius and the dispersion. In  Figure SA the K-M 
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dis t r ibu t ions  for .  three values of 2, 4.5 pm, 6.0 pm, and 7.5 pm, with R - 
1 gm m-', are shown. While the modal radius changes only s l i gh t  with in- 
crease i n  a, the number of drops with r a d i i  l a rger  than 20 pm increases mar- 
kedly. 

The resul t ing difference i n  the e f f ec t  on col lect ion is shown i n  Fig- 
ures 5B, 5C, and 5D. In  these diagrams the  spec i f ic  l iquid content q, ex- 
pressed in grams per cubic meter per un i t  of log a is graphed against  log a, 
in order t o  show the t ransfer  of-liquid content $rm small t o  large drops. 
It is seen that fo r  the case of a - 4.5 pm, i n  which there  are very few drops 
with radius larger  thag 20 pm, there is negl igible  change i n  l iquid water 
dis t r ibut ion,  but fo r  a - 7.5 pm the water accumulates on larger  and larger 
drops, so that by 2000 seconds there is a larger  mass of water in drops larg- 
er than 100 pm radius than i n  the more numerous smaller cloud drops. 
e f fec t  of the drops i n i t i a l l y  larger  than 20 pm is c lear ly  demonstrated. 

The 

There have been a number of attempts t o  incorporate the microphysical 
processes of condensation and col lect ion together with the larger  sca le  dy- 
namical processes in to  a complete model of the development of precipitation. 
As an example of these attempts we shall cite the investigation by Ogura and 
Takahashi (1973) of the development of warm r a i n  i n  a convective cloud. They 
computed the development of convection i n  a conditionally unstable atmosphere 
using a "one a d  one-half dimensional" time-dependent m o d e l ,  and evaluated 
the d is t r ibu t ion  of drop s izes  as a re su l t  of condensation. coalescence, sed- 
imentation a d  drop breakup. 
the s i z e  density as a function of height 40 minutes a f t e r  the inception of 
convection. The water content has already developed a second peak density 
fo r  drops about one millimeter i n  radius, and precipi ta t ion is  reaching the  
ground. 

CONCLUSION 

As an indication of the r e su l t  Figure 6 shows 

The physics of drops remains a cent ra l  problem i n  meteorology. While 
the theory of condensation on nuclei  appears t o  be f a i r l y  w e l l  i n  hand, the 
circumstances when i t  leads t o  drops la rge  enough t o  engage i n  the collec- 
t ion  process are not w e l l  known. The values of co l l i s ion  efficiency appear 
t o  be sat isfactory,  but the  coalescence efficiency is almost unknown. 
par t icu lar ,  the influence of charges and f i e l d s  on them, especial ly  the very 
small charges and f i e l d s  that occur natural ly  i n  the  ear ly  stages of develop- 
ment of cloud and precipi ta t ion,  need investigation. 
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The wake capture of drops i n  air. 
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Figure 1. 
drops growing by condensation on nuc le i  of various sizes as a i r  parcel  rises 
i n  fashion simulating a cumulonimbus cloud. B ( r igh t ) :  Drop s i z e  dis t r ibu-  
t ion  a t  various times i n  air parcel  containing nucleus d i s t r i b u t i o n  shown by 
curve labeled "t = 0" as i t  rises. 

A ( l e f t ) :  Variation with time of r e l a t i v e  humidity and s i ze  of 
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Piguie 5. 
I: a = 4.5 pm, 11: a = 6.0 pm and 111: a - 7.5 pm. (B) Distributions at 
various times, given in seconds, resulting from evolution of spectrm I due 
to collection. (C) Distributions resulting from evolution of spectrum I1 
due to collection. 

(A) KhrigiEn-Mazin drop size distributions for !d = 1 gm m-3 and 

(D) Distributions resulting from evolution of spectrum 111. 
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cloud per interval of drop radius at  various hei  hts after 40 minutes of con- 
vection. Contour values range from 10-11 to 10-f cm-3 gm-'. 
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Table 1 

Canparison of Experimental Collection Efficiency (E,) and 
Canputed Collision Efficiency (Ec) for Collector Drops of 

Radius A with Approximately Zero Charge 

.18 .20 .22 .24 .42 .46 .50 .64 P 

A (w) E, E, E, E, E, E, E, E, E, E, E, E, E, E, E, E, 

15-24 .21 .14 .18 .15 .05 .15 
25-34 .01 .46 

45-54 .26 -48 .12 .50 
55-64 .23 .65 
65-74 .07 .J5 .OJ .78 

85-94 .23 .81 .10 .83 .ll .85 
95-104 .ll .85 
105-114 .23 .81 .13 .86 

L 
t 



486 

Table 1 

Comparison of Experimental Collection Efficiency (E,) and 
Computed Collision Efficiency (Ec) for Collector Drops of 

Radius A with Approximately Zero Charge 
.. 

P .18 .20 .22 .24 .42 .46 .50 .64 

A (W) E, E, E, E, E, E, E, E, E, E, E, E, E, E, E, E, 

15-24 
25-34 

45-54 .26 .48 .12 .58 
55-64 .23 .65 
65-74 .07 .75 .07 .78 

.21 .14 .18 .15 .05 .15 
.01 .46 

85-94 .23 .81 .10 .83 .ll .85 
95- 104 .ll .85 
105-114 .23 .81 .13 .86 
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Abstract 

water drop i n  atmospheric physics. The pr inc ipa l  i n t e r e s t  has 
been i n  determining whether drops, e i t h e r  s ing ly  or by in t e rac t ing  
w i t h  others ,  can modify the  physical  conditions ins ide  na tu ra l  
clouds. 
the  laboratory i n  a va r i e ty  of experiments, it has been shown that 
1 )  p a r t i a l  coalescence i s  followed by s a t e l l i t e  drop production 
which modifies t he  cloud drop-size d i s t r i b u t i o n  and can acce le ra t e  
r a i n f a l l ;  2 )  the  freezing of supercooled drops may be accompanied 
by i c e  s p l i n t e r  production; 3 )  t he  v ib ra t iona l  frequencies of 
supported and f r e e l y  suspended drops a r e  modified by the  presence 
of e l e c t r i c  charge and e l e c t r i c  f i e l d s ;  4) i n t e rac t ing  drops can 
separa te  charge i n  the  weak e l e c t r i c  f i e l d  of t he  atmosphere i n  
such a manner as t o  increase the e l e c t r i c  f i e l d  but more usual ly  
t o  decrease i t;  5)  when the ambient e l e c t r i c  f i e l d  has reached 
values  far  below that  needed f o r  breakdown of the  a i r ,  two 
i n t e r a c t i n g  drops can promote breakdown, which i n  na tu ra l  clouds 
w i l l  i n i t i a t e  l igh tn ing .  

relevance t o  the  Corference and i n  p a r t i c u l a r  w i l l  present t he  
latest r e s u l t s  on the  in t e rac t ion  behaviour of two water drops 
i n  an e l e c t r i c  f i e l d .  

clouds; t he  coalescence of drops modifies t he  size d i s t r i b u t i o n  
and i s  responsible  for t he  growth of individual  drops t o  precip- 
i t a t i o n  drop s i z e  such t h a t  they w i l l  f a l l  from t h e  cloud as 
r a i n .  Drop i n t e r a c t i o n s  within the  ambient e l e c t r i c  f i e l d  of 
t h e  lower atmosphere, when they  r e s u l t  i n  separat ion,  are able 
t o  separa te  e lectr ic  charges between t h e  two in t e rac t ing  p a r t i c l e s  
which due t o  a s i z e  d i f fe rence  may f a l l  a t  d i f f e ren t  speeds thus  
separa t ing  e l e c t r i c  charge over a l a rge  volume of the  cloud. 

Research i n  t h i s  department has centered on the  r o l e  of t h e  

By the  p r a c t i c a l  modelling of water drop in t e rac t ions  i n  

The paper w i l l  deal wi th  aspects  of  these phenorcena of 

Water drop in t e rac t ions  play an important r o l e  i n s ide  n a t u r a l  

DROP COALJSCENCE AND SATPLLITE DROP PRODUCTION 

Research i n  t h i s  laboratory has been c lose ly  involved with 
these  processes and both experimental and t h e o r e t i c a l  s tud ie s  
have been made. U t i l i s i n g  the  apparatus shown i n  Fig.1, Brazier- 
Smith, Jennings and Latham' were ab le  t o  produce two cont ro l lab le  
streams o f  water drops of r a d i i  R and r between 150 and 750um 
with R/r i n  t e range 1.0 t o  2.5, r e l a t i v e  ve loc i ty  U from'0.3 
t o  3.0 m.sec-? and impact parameter X, the  perpendicular d i s tance  
between t h e  cent re  of one drop and t h e  undeflected t r a j e c t o r y  of 
t he  Other from X = 0 t o  ( H + r ) ,  the  maximum value f o r  contact .  
Water flow from t h e  r e se rvo i r  was modulated by two o s c i l l a t i n g  
pumps before it passed through f i n e  hypodermic needles.  The flow 
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rate, frequency of modulation and size of needle controlled the 
size of the drops. Several types of interaction were noted:- 
1 )  bouncing contact, with the air film preventing contact, 
2) permanent coalescence and 3) temporary coalescence with and 
without satellite drop production. These categories are shown 
in Fig.2. Fig.3 indicates the collision parameters where is 
the angle between the streams of dro s and VR and Vr are the 
drop velocities, then: u2 = vfi2 + Vrq - 2VRVrCOS$. $ was 
measured photographically and the velocities could be determined 
from the modulator frequency. 
Xc, above which separation of the drops occurred and below which 
the coalescence was permanent; thus a coalescence efficiency was 
defined : 

e was zero when bouncing occurred f o r  low velocity collisions with 
X nearly equal to (d+r) .  
categories occurred and at large values of X, the angular momentum 
was sufficient to cause separation of the temporarily united drops 
and the long filament which was pulled out as they separated broke 
into small satellite droplets. 
was separation not accompanied by satellite production, and because 
this was such a limited range of all the possible values of X which 
did produce satellites, it was assumed that such production is 
common in nature. 

A critical value of 1 was found, 

xc )2 
c =  (m 

At higher velocities, the other collision 

Only at values of X close to Xc 

The criterion for separation was simply that it occurs if the 
rotational energy exceeds the additional surface energy required 
to reform the two drops from the coalesced drop-pair of radius Ro 
rotating with angular momentum J about its centre of gravity. 

J = (4npUXr3R3)/[(3)(R3 +r3)] 
where p is the drop density. The rotational kinetic energy, 
J2/21* is given by R.E. = 5npU X R r /(3R0") where I is the 
moment of inertia of a sphere rotating about an axis through its 
centre 
to reform two drops of surface tension is 

When X = Xc at the boundary between coalescence ana eeparation, 
S.E. = R.E., and 

2 2 6 6  

5 (I = 8nRo 0/15) .  The additional surface energy S.B. needed 

4nr 2 o(l+y2 - [ t + y  3 %  J ) where y = R / r .  

c = 2.4uf(~/r)/(rp~~) ( 1 )  
where f(R/r) = [ ( l + y 2  - (l+y3) 3 )(l+y3)4]/[y6(1+y)2J which varies 
from 1.3 for R / r  = 1 to 3.8 for R/r = 3. 
parameter characterizing the interaction process. 

values of r and U2rp/o respectively for equal sized drops. The 
theoretical curves were obtained from the above equation. 8 de- 
crea es as U and r increase and E decreases from l towards zero 

drop sizes. In all cases excellent agreernent was noted between 
the experimental data and theory. The results showed that c lies 

U2rp/u is a dimensionless 

Fig.4 shows the measured variations of e ( =  c 3 ) and E for 

as U 9 r p / a  increases from 3 to infinity. Fig.5 is for unequal 
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between 0.1 and 0.4 f o r  equal s ized  drops and between 0.2 and 
0.6 f o r  drops with R/r = 2.0. A t  l a r g e r  values of Z / r  l e s s  
angular momentum was ava i lab le  t o  p u l l  the  two drops apa r t .  

charges on the  drops, of magnitude s i m i l a r  t o  that found i n  
n a t u r a l  clouds. A t  t h e  lower ve loc i ty  the  drops had longer t o  
i n t e r a c t  and hence g reached a higher value than a t  the  higher 
ve loc i ty .  The charges were s u f f i c i e n t  t o  modify the  t r a j e c t o r i e s  
of t he  d rops  only s l i g h t l y  causing E t o  reach a maximum value f o r  
charges of 23pC. 

Brazier-Smith, Jennings and Latham2 made use of the above 
data i n  a s tochas t i c  computation of t he  development of r a i n f a l l  
t ak ing  i n t o  account t h e  production of s a t e l l i t e s  i n  an attempt 
t o  explain the  r a p i d  increase i n  drop s i z e  as revealed by radar 
which occurs i n  thunderclouds. The above theory p red ic t s  that 
drops of r a d i i  between 3OOpm and 5Ohm co l l id ing  a t  t h e i r  term- 
i n a l  ve loc i ty  withlarger  drops of rad ius  g rea t e r  by a f a c t o r  O f  
between 1.5 and 3.0 w i l l  provide t h e  l a r g e s t  cont r ibu t ion  t o  t h e  
r a t e  of production of s a t e l l i t e s  which are typ ica l ly  of 80um 
rad ius ,  a t y p i c a l  event producing about 3 s a t e l l i t e s .  A stoch- 
a s t i c  growth equation was generated which permitted calculationa 
t o  be made of t he  evolution of a d i s t r i b u t i o n  of drops within a 
homogeneous cloud. The breakup o f  drops l a r g e r  than 3mm rad ius  
was included i n  t h e  computation but was found t o  be l e s s  impor- 
t a n t  than sa te l l i t es  i n  the  production of r a i n f a l l .  I n  order  
t o  compute r a i n f a l l  rates account was taken of the  continuous 
c o l l e c t i o n  of non-precipitating cloud water by the  drops. The 
cloud water was released by condensation a t  a r a t e  J ~ug.rn'~s-~. 
The i n i t i a l  drop spectrum A consis ted of 2,500 drops per cubic 
metre i n  the r ad ius  range 30 t o  lOOpm with a water content of 
3 mg.m-3. Four types of i n t e r a c t i o n  were considered: Case 1 ,  
Coalescence e f f i c i ency  e given by equ. 1 ,  sa te l l i tes  produced; 
Case 2, Q given by equ. 1 ,  no sa te l l i t es  produced; Case 3, 
g=1, no s a t e l l i t e s ;  Case 4,  g=O, with satel l i tes .  It was found 
t h a t  the  time taken for the  p rec ip i t a t ion  i n t e n s i t y  t o  reach 
l0mm.hr-1 occurred at about 850sec f o r  a l l  cases;  thereaPter  
they diverged so that  a t  an i n t e n s i t y  of 50mm.hr-1 the  t i a e  
i n t e r v a l  between cases  3 and 4 ( t h e  f a s t e s t  and slowest respec- 
t i v e l y )  was only 1 minute. Cases 1 and 2 were i d e n t i c a l  showing 
t h a t  t he  inf luence of s a t e l l i t e  drops and the  p a r t i c u l a r  value 
o f  g chosen are not important t o  the  r a i n f a l l  rate. By increas ing  
J ,  t he  p rec ip i t a t ion  in t ens i ty  increased r a p i d l y  showing tha t  
micro-physical processes involving raindrops a r e  much less impor- 
t a n t  than t h e  ra te  of release of cloud water. Fig.7 shows the  
raindrop s ize-d is t r ibu t ion  after 20min i n  which i t  i s  seen that 
the  r a t e  of production of l a r g e  drops is  sens i t i ve  t o  the  value of 
E .  Case 3, f o r  e = l ,  has developed the l a r g e s t  drops, and i n  
Case 1 ,  the  s a t e l l i t e  drops lead t o  a bimodal d i s t r i b u t i o n  wi th  a 
peak around 100um. This  most r e a l i s t i c  case is shown i n  more 
d e t a i l  i n  Fig.8. The u n r e a l i s t i c  deple t ion  of smaller drop s i z e s  
i s  due t o  t he  cut-off o f  the i n i t i a l  s i z e  d i s t r i b u t i o n  at 30um 
and t h e  non-replenishment by coalescence of cloud drople t s .  
r a d a r  r e f l e c t i v i t y ,  zn j r i6 ,  was determined and increased by an 

Fig.6 shows the  e f f e c t  of s m a l l  equal and opposite e l e c t r i c  

The 
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6 order of magnitude every 23min. Because of the r dependence, 
the satellites produced a negligible contribution. Thus the 
overall conclusions of this work were that the contribution of 
satellite drops to the rainfall rate is insignificant. 

In a development of this work Brazier-Smith, Jennings and 
Latham3 computed the effects of evaporation and drop-interactions 
on a rainshaft. They concluded that the coalescence of raindrops 
acts to preserve within the rainshaft a considerable amount of 
liquid water that would otherwise have been lost by evaporation. 
Another conclusion was that the capture of small and satellite 
drops by larger raindrops is more efficient than evaporation in 
removing the smaller particles from the spectrum. 

INTF,RACTING WATER DROPS: CHARGE TXANSFER 

Sartor4 showed that high electric fields may be rapidly 
generated by the interacting particles which separate charge in 
such a manner as to continually enhance the existing field. This 
process is known as the ind ctive process of thunderstorm electri- 
fication. 
conducting spheres separate in an electric field, then the amount 
of charge, q, which is transferred is given by: 

electric field and the line of centers of the spheres at the moment 
of separation; yl is a function of r/R which decreases from n2/2 
when r/R = 0 to n2/6 when r / R  = 1. 
this effect the apparatus shown in Fig.1 was used, with the 
addition of a horizontal electric field and two induction cans 
connected to electrometers in order to catch and measure the 
charge on the drops after separation. The type of interaction 
used is shown in Fig.3(iv) in which the fine filament drawn out 
condenses to form satellite drops. Preliminary measurements of the 
charge transfer are shown in Fig.9 in which the theoretical line 
is calculated from the equation above. In the upper graph for 
equal drops there is an indication that the charge tran fer is 
larger than that predicted by theory. Censor and Levin8 have 
computed theoretically the charge transferred between two drops 
which have a long neck between them prior to separation. For 
example, for a filament of length 4R for equal drops the charge 
transfer is enhanced by loo$ above that for the separation of 
undeformable drops. Without taking this enhancement into account 
Jennings and Latham7 showed that the charge transfer process is 
capable of separating 1 Coul.km'3min-1 of charge in an existing 
electric field of 30kV/m typical of an embryo thunderstorm having 
a typical precipitation water content of 4 gm.m3. Such a charge 
separation rate was shown by Mason8 to be a requirement of a sat- 
isfactory thunderstorm electrification theory. However, this 
particular interaction studied here separates charge in a manner 
which reduces the electric field. Sartor envisaged a process 
whereby the drops do not swing around each other while in contact 
but separate before swinging round; such a process is more likely 
to occur in clouds below OOC when solid particles interact. Thus 

Latham and Mason Ft calculated that if two contacting, 

q = 1.1 x 10-10ylEr2cose where e is the angle between the 

In an experimental study of 
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i t  seems that i n  all-water clouds, i n t e rac t ions  occur which dis- 
s i p a t e  t h e  f i e l d ,  and i f  t he  enhanced charge t r a n s f e r  due t o  the  
f i laments  is taken i n t o  account, t h i s  d i s s ipa t ion  w i l l  be even 
faster. It seems even more d i f f i c u l t  now t o  explain "warm-cloud 
thunderstorms", containing no i c e ,  which have been reported i n  
the  l i t e r a t u r e .  Experiments on t h i s  important subject  are being 
continued i n  UMIST. 

VIBRATIONAL FREQUENCIES OF DROPS 

This subject  is of i n t e r e s t  because of the  p o s s i b i l i t y  of 
de te ra in ing  drop s i z e s  within clouds by using a ground-based radar 
whose r e t u r n  s i g n a l  is  modulated by the  v ib ra t ing  drops. 
determined the na tu ra l  frequency of v ib ra t ion  of a drop carrying 

2 
e l e c t r i c  charge: 

64n R Tco 
where Q is  t h e  charge on t h e  drop, T i s  the  surface tension and 
f o  i s  t h e  charge-free frequency given by (2T/n2R3p)*. Experiments 
were conducted by Saunders and Wonglo using a v e r t i c a l  wind tunnel 
t o  f r e e l y  suspend the  drops and a high-speed camera t o  record the  
drop v i b r a t i o n s  from which t h e i r  frequency could be determined. 
The r e s u l t s  were i s  exce l len t  agreement w i t h  theory d showed 

drop-size would s u f f e r  an e r r o r  of 0.6s. O f  more importance is 
the  e f f ec t  of the  e l e c t r i c  f i e l d ;  a f i e l d  of 6 x 105V m-1 i n  this 
case leads t o  an e r r o r  of 8.56. Brazier-Smith, Brook, Latham, 
Saunders and Smith1 1 inves t iga ted  t h e  behaviour of v ib ra t ing  drops 
i n  an e l e c t r i c  f i e l d  and developed a theory t o  r e l a t e  the  vibra- 
t i o n a l  frequency t o  the  e l e c t r i c  f i e l d .  Xxperimental measurements 
agreed well with t h i s  theory.  Thus i f  the  v ib ra t ion  of raindrop6 
is t o  b e  used t o  determine drop-size d i s t r i b u t i o n s  i n  highly 
e l e c t r i f i e d  clouds,  t h e  f i e l d  s t r eng th  w i l l  have t o  be measured 
independently. 

LIGHTNING TRIGGERING BY INTERACTING WATEa DROPS 

Bayleighg 

3 
1 f = f o ( l  - 

t h a t  f o r  a t y p i c a l  2 m  rad ius  drop carrying 3 x 10-1 Y C t h e  measured 

The most favoured explanation f o r  the  i n i t i a t i o n  of l i gh tn ing  
has been that pos i t i ve  corona is  given off from the  surface of a 
highly d i s to r t ed  raindrop i n  a high e l e c t r i c  f i e l d .  Unfortunately 
t h e  e l e c t r i c  f i e l d  required f o r  t h i s  t o  occur i s  over 550kV/rp, 
whereas the  m a x i m u m  f i e l d  uieasured i n  a thunderstorm is  400kV/m. 
A f i e l d  of 400kV/m is  able  t o  extend the length  of pos i t i ve  
streamers which suggests that t h i s  value of f i e l d  i s  required f o  
l i gh tn ing  i n i t i a t i o n .  A recent  study a t  UMIST, Crabb and Latham , 
has been made t o  discover whether a p a i r  of ra indrops within a 
thundercloud may be grossly d i s t o r t e d  and produce corona a t  a 
lower onset f i e l d  than a s i n g l e  drop. Fig.10 shows the  apparatus 
i n  which a l a r g e  drop of rad ius  2.7mm could be dropped while a 
smaller drop of rad ius  0.65mm could be e jec ted  upwards s o  tha t  
the two col l ided  within a v e r t i c a l  e l e c t r i c  f i e l d  with a r e a l i s t i c  
r e l a t i v e  ve loc i ty  of 5.8m.sec-1. 
nected t o  the  lower p l a t e  which was grounded and thus  pos i t i ve  
corona discharge given off from the  underside of the  drops could 

72 

A s torage  osci l loscope was con- 
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be detected. Fig.11 shows several of the interactions: 'd' 
shows a central collision with the larger drop in the 'bag mode'; 
in *e' the smaller drop has broken through the bag. The most 
glancing collisions (b,c,f) resulted in the formation of liquid 
filaments sometimes 20mm long which broke up into droplets. 70% 
of all interactions resulted in the emission of corona with a 
minimum field of 250kV/m producing corona when the filament 
length was a maximum. Corona occurred for central collisions in 
fields of around 598kV/m. 
usually around lo-' C of charge was released which is insufficient 
when all drop interactions are taken into account, to reduce the 
conductivity of the cloud and hence inhibit field growth. However, 
by assuming that corona i s  initiated in fields below 350kV/m if 
the two drop radii are greater than 1.8mm and 0.65mm, then in a 
cloud of precipitation water content lgm/m3 the rate of corona 
events is 2 x 10-2m-3s-1, which is 1 per minute per cubic metre 
which is adequate to explain lightning initiation. 

Continuous corona was not observed, 

ICE PARTICLE MJLTIPLICATIOX 

One of the most puzzling problems in atmospheric physics at 
present is the discrepancy between the concentration of ice part- 
icles in clouds whose lowest temperature is above -12OC, compared 
with the concentration of ice forsing nuclei. For example, 
Hobbsl3 found that the ratio of ice crystal concentration to ice 
nucleus concentration decreased sharply with decreasing temper- 
ature from about 104 at -5OC to unity at -250C. In such clouds 
there are always observed rimed ice pellets of a few millimetres 
diameter together with large supercooled drops of radius greater 
than 250um. The most likely mechanism of ice particle multipli- 
cation is one in which supercooled drops shatter on freezing, 
either in isolation or when they impact onto an ice pellet and 
form rime. Hallett and Mossopl4 have found that several hundred 
ice splinters were ejected for every milligramme of accreted rime, 
a result which is 3 orders of nagnitude greater than other workers 
and has not yet been inaependently verified, but which is suffic- 
iently large to explain the discrepancy. An investigation of the 
isolated drop freezing process has been proceeding in Nanchester. 
Gay15 has constructed a chamber, Fig.12, in which supercooled 
water droplets can be freely suspended in atmospheric conditions 
while their freezing behaviour is noted. The charged drop is 
introduced into an electrodynamic field by Slanchard's bubble 
bursting techniquel6. 
field and constrained by analternsting potential applied to a 
metal ring surrounding tr.e drop. Holes in this ring permit 
observation of the drop whose vertical position can be controlled 
by varying the d.c. field. The whole electrode system is sur- 
rounded by a low temperature chamber and an attempt was made to 
maintain the environment in a supersaturated state so that if an 
ice splinter were to be ejected upon freezing, it would grow and 
could be detected. It proved impossible, however, to achieve 
supersaturation due to the deposition of the vapour upon the 
electrode. With this limitation, the freezing of supercooled drops 
was studied. 3elow -15OC the drops often froze spontaneously; 

The drop is supported by a vertical d.c. 
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above this temperature nucleation was induced by introducing 
silver iodide. The charge-to-mass ratio of the drop was deter- 
mined before and after freezing; freezing resulted in the drop 
being displaced and it could be restored to the original position 
by adjusting the d.c. potential. The drop size was measured, and 
the initial charge on the drop was known. Table 1 shows the fre- 
quency of occurrence of the various freezing modes. In 70% of 
the cases freezing occurred rapidly with an increase in charge 
to mass ratio of 5 - lo$; no visible matter was ejected and the 
drop remained spherical. In 18$ of the cases surface irregular- 
ities occurred but again no visible splinters were ejected. For 
3516 of the cases, frost-like growths on the frozen drop were seen 
to detach themselves from it and were swept up in the electric 
field. In lO$  of the cases the frozen drop exhibited subsequent 
changes in its charge to mass ratio. 2% of freezing drops which 
were allowed to evaporate to the Rayleigh limit froze on disrup- 
tion, the charge to mass ratio decreased but no splinters were 
observed. Calculations of the mass l o s s  showed that it exceeded 
the theoretical evaporative mass l o s s  on freezing and was there- 
fore due to the ejection of either liquid or solid material. 
The general conclusion of this work is that drops in the radius 
range F j - lOOurn  produce, typically, 40 splinters when they freeze 
with maximum production at -50C, but the conclusions are based 
on secondary evidence only, it being impossible to capture a 
splinter. Such a number of splinters is adequate to explain the 
ice multiplication in clouds as shown by the stochastic treatment 
of Chisnell and Lathaml7. This multiplication process is of such 
importance that more effort needs to be expended in order t o  de- 
velop a method of permitting a droplet to freeze in a supersatur- 
ated environment so that the splinters produced will grow and 
may be captured. 

Work in UKIST is directed towards solving some of the out- 
standing problems in attriospheric physics and in particular the 
role that water drops and water drop interactions play in the 
physical and electrical growth and development of clouds. To 
this end work is continuing into the coalescence of drops, both 
experimental and theoretical in order to build up a realistic 
picture of the development of a cloud particle spectrum through 
the life-time of a cloud. Laboratory simulations of charged 
water drop interactions in electric fielas are continuing in 
order for us to oe able to understana "warm-cloud" electrific- 
ation. The study of the triggering of lightning is to be ex- 
tended to a large scale laboratory cloud to learn whether the 
indiviaual interactions which lead to corona discharge will 
occur in a more realistic environment with many more than just 
two particles present. It is hoped to aevise a means of freely 
supporting a supercooled drop in a supersaturated environment 
in order that any fragments which may be emitted upon freezing 
can be captured and iaentified in order to resolve the most 
important ice multiplication problem. 

i 
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NUCLEATION THEORY AND ITS ATMOSPHERIC APPLICATIONS 

I. INTRODUCTION 

In recent years, the growth of interest in the study of nucleation 
theory for metastable systems has greatly increased. 
interest is due in part to the fact that nucleation in supersaturated 
vapors or superheated liquids is one of the most important aspects of many 
fields, such as the atmospheric sciences, biology, chemistry, industrial 
engineering, and physics. A serious communication problem and a disconcerting 
lack of overall direction among research efforts always exist in a field 
involving multiple disciplines. 
progress is to bring together information from various fields relating to 
one common problem. 
certainly will provide an opportunity to exchange information from different 
disciplines on the science of liquid drons and bubbles in liquids. 

This increased 

One of the methods of speeding up scientific 

The International Colloquium of Drops and Bubbles 

From the viewpoint of kinetic theory, liquid drops in a gas phase or 
gas bubbles in a liquid phase can be considered one of the metastable 
states of gas-liquid phase transition. This phase transition is initiated 
by nucleation. 
stages: (1) the development of a supersaturated state; (2) the generation 
of nuclei  of the new phase; (3) the growth of these nuclei to form larger 
drops or larger bubbles. 

In general, the metastable states can be described by three 

The supersaturated state can result from changes in physical parameters 
(pressure, temperature, tension, etc.) or by chemical-photochemical pro- 
duction of reactants which have low volatility. Nuclei of the new phase 
can be generated homogeneously by: 
which involves only one gaseous component; (2) homogeneous heteromolecular 
nucleation, which involves two or more gaseous components, i.e., B2S04 
and H20 molecules can combine to form a sulfuric acid drop. They can also 
be generated heterogeneously by the additional force fields associated 
with ions, impurities, surface or structural imperfections. Each of these 
heterogeneous nucleations can be, of course, either homomolecular or 
heteromolecular. 
of the nucleation phenomenon and its atmospheric applications. 
processes are covered by other speakers in this colloquium and will not 
be discussed here. 

(1) homogeneous homomolecular nucleation, 

In this report, we concentrate our efforts on the studies 
The growth 

We briefly discuss the present status of the homogeneous nucleation 
theories and experiments from the vapor to the liquid phases in section 11. 
Section I11 covers some selected nucleation phenomena and their roles in 
the atmosphere. Problems associated with nucleation theories such as 
"microscopic surface tension," "contact angle," etc., are examined in 
detail in section IV. 
problems in relation to the study of nucleation phenomena. 

11. HOMOGENEOUS NUCLEATION THEORIES AND EXPERIMENTS 

In the conclusion, we outline some future research 

hihils homogeneoirs nucleation processes have little application to the 
real atmosphere, their study is nevertheless the basis of much other, more 
useful theoretical work. 
homogeneous nucleation theories and experiments. 

Here, we briefly discuss the present statu's of 
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Three theoretical approaches are most commonly used for study of 
homogeneous nucleation phenomena namely, (1) the thermodynamic a proachf ' 2  
(2) the statistical appr~ach~,'~'' and (3) computer simulation!? ' 
dynamic theories assume the equilibrim number of clusters (per cumic 
centimeter) C(n), containing n molecules to be proportional to exp(-AG /kT) , 
where AGn and the value of the proportionality factor for C(n) are conpro- 
versial, most thermodynamic theories result in the general form 

Thermoc 

AG, = -n-kT-ln(y) - n'-kT.ln(x) + 'ckT.ln(n) + const 
U -T n n C(n) = qo*n x y 

Thus C(n) = pre-exponential factor*exp[-(bulk term + surface term)/kT]. 
In "classical" nucleation theory' ' one has t=O and qo=C(l)=concentration 
of single molecules. The y-term comes from the bulk formation energy, 
the x-term from the surface free energy (the leading correction excess 
free energy, x e 1  for positive surface tensions), and the physical 
interpretation of the logarithmic and constant term in Eq. (la) are contro- 
versia13TS In general the bulk term 

Y exp (l.I-Pcoa) /kT 

and for ideal gas laws 

Y P/Pcoex 
where pcoe and Pcoex are the chem-x- potential (per molecule) and the 
pressure OF the vapor on the coexistence curve where liquid and vapor are 
in eqvilibrium; 1.1 and P are the values in the (supersaturated) vapor. 
The n term in Eq. (la) arises from the surface area ( a n  , o<u<<l. for 
spherical cluster a=2/3), and the surface tension: 

-n'kT*ln(x) = (surface tension) (surface area) (3) 

which defines the dimensionless parameter x. It is widely accepted that 
the surface tension of a bulk liquid is not necessarily equal, to the surface 
tension of a droplet containing, aay, only 100 molecules. With the same 
surface area, a difference of surface tension, sap.l5%, will result in a 
difference of nucleation rate on the order of 101 ', 

Most controversy centers on the logarithmic term and the constant 
contribution to the formation energy in Eq. (la). Different values of 
'c and q are derived from the statistical approaches of various model2 -'. 
The staeistical approaches have focused on the evaluation of the partition 
function for an "embryonic liquid" droplet and the resulting prediction for 
nucleation theory. 
translational degrees of freedom for the small droplets) give T = -4 and 
qo>> C(1). Many other results for T and qo have been proposed4" and no 
general agreerhent has been reached' ' . 

Previous experimental reports' 2'' (see Table I) have indicated that 

The correction factors due to the rotational and 

nucleation rates measured for H20, CH OH, and C H50H are in good agreement 3 with the predictions of the classical theory, wxereas NH3, C6H6, CHCL3, 
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and CCL F are found to be in remarkably good agreement with the Lothe-Pound 
theory.'13 This non-uniformity of results has furthered the controversy 
with respect to the treatment of rotational and translational terms in the 
free energy of an embryo. 
prediction of nucleation rates. 
comparison between experiment and results of the classical theory and of 
the comparison between experiment and results of the Lothe-Pound theory 
has been made using the measured bulk surface tnesion for the liquid droplet. 
As pointed out before, a 15% change in the surface tension of a small 
droplet would affect the nucleation rate by a factor of 10' '. Therefore, 
a closer examination of the calculation of the surface tension (or of the 
surface free energy term in the formation energy of an embryo) for small 
droplets is desirable. In section IV, we will examine the calculation of 
"microscopic" surface tension in detail. 

These terms give rise to a factor of 10' in the 
However, it should be noted that the 

A computer simulation of small clusters should, in principle, give an 
exact answer to all the controversial problems mentioned above. However, 
the usual microcrystalline approximations6 " have considered only the 
intermolecular binding energy and the vibrational free energy for a given 
configuration but neglected the anharmonic vibrational terms and the 
configurational entropy. 
different "equilibrium" configurations exist, particluarly for liquid 
droplets.) 
clusters, " e wlrich take into account such necessary corrections, one 
observes that the droplet formation energy can differ by as much as 100 kT 
from the microcrystalline harmonic approximation, givin a difference of 
a factor l o w  in the nucleation rate. Recently, Binder" has investigated 
the thermodynamic properties of metastable states and nucleation process 
in the lattice gas model by Monte Carlo method. 
provides an insight into the properties of metastable states, the lattice 
gas model is unrealistic. 

(For the same number n of molecules numerous 

From molecular dynamics and Monte Carlo simulations of argon 

Although this approach 

In conclusion, the computer simulation approaches may provide accurate 
inforumtion on the thermodynamic properties of a small cluster and the 
prediction of the nucleation rate if one makes a.successfu1 choice of 
a suitable model. But, computer simulations are material-dependent and 
they are complicated for realistic intermolecular potentials. 
cal approaches are based on more fundamental principles of statistical 
mechanics. The controversies arise from the evaluation of the partition 
function which is model dependent. 
theory based on the statistical approach requires a well defined concept 
of "physical cluster." Thermodynamical approaches are semi-phenomenolo- 
gical, and thus avoid the complications of computer simulations and the 
controversial problems of statistical approaches. A good thermodynamic 
theory must be able to obtain accurate and correct parameters (such as 
surface tension) either from basic calculation or from experimental 
measurements to enable prediction of nucleation rate. 

nozzl? and molecular beam' techniques are the experimental tools moat 
often used to check the critical supersaturation in various substances and 
the nucleation rate as a function of the supersaturation. An excellent 
critical review of various experimental measurements for different sub- 

Statisti- 

Further investigation of nucleation 

ansion cloud chamber l 6  diffusion cloud chamber, ' 'I supersonic 
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stances of critical su ersaturation for nucleation of liquids from vapor 
was reported by Pound.qo In this review, Pound gives brief descriptions 
of various experimental techniques and their limitations. Values of 
critical supersaturations for homogeneous nucleation of droplets from the 
vapor are tabulated and plotted. 
of each experimental technique pointed out by Pound, one should also examine' 
the impurities in the substance. 
"heteromolecular"a nucleation theory it can be seen that the impurity 
factor will significantly change the values of critical supersaturation. 

In addition t6 observing the limitations 

From the study of "binary"2"22 and 

The authors would like to take this opportunity to inform the readers 
that a series of books on nucleation theory, experiment, and various 
applications edited by A. C. Zettlemoyer and Kiang" will be published 
in the near future. The present status of the nucleation theor$ and 
experiment will be discussed in great detail in these books. 

111. ATMOSPHERIC APPLICATIONS 

Selected topics of nucleation phenomena (cluster formation involving 
ions will not be discussed here) and their roles in the atmosphere are 
discussed in this section. In order to describe the roles of different 
nucleation processes in the atmospheric applications, we separate our 
discussions into two cases: relative humidity (Wi) below 100% and RH 
above 100%. 

For RH <loo%, the role of nucleation theory in the atmosphere is to 
describe the Initial stage of the atmospheric aerosol formation mechanism. 
The mechanism of formation and growth of aerosols in the atmosphere can 
be schematically illustrated by the phase transition block diagram (gas- 
to-particle conversion, gas-to-particle interaction, and particle-particle 
interaction) as shown in Fig 1. This diagram indicates all the reaction 
mechanisms (represented by arrows) that govern the transition of gaseous 
products (represented by boxes) into a solid or liquid phase. 

For RH > loo%, the role of nucleation theory in the atmosphere is to 
describe the cloud droplet and ice crystal formation mechanism. The 
mechanism of formation and growth of cloud droplets and ice crystals in 
the atmosphere can also be schematically illustrated by the phase transition 
block diagram I1 given in Fig 2. 
modification and the mechanism for multiplication process of ice will not 
be discussed here. 

The application of nucleation to weather 

Here we would like to discuss the most dominant nucleation processes 
for the aerosol formation (RH, <loo%) and cloud droplet and ice crystal 
formation (RH > 100%). 

A. Relative humidity below 100% 

It is not possible to form water droplets homomolecularly under 
atmospheric conditions of RH <loo. Relative humidity greater than 400% 
is required for the homogeneous homomolecular formation of water droplets, 
and RH > 100% for the heterogeneous homomolecular formation of water droplets 
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with impurities.2S Therefore, for RH <loo%, other nucleation mechanisms 
are needed to form a new aerosol in the atmosphere. 
system such as the atmosphere, several different gaseous molecules may come 
together to form an aerosol. 
near the "source" of those different gaseous molecules) homogeneous hetero- 
molecluar nucleation theory is required to study the initial stage of aerosol 
formation involving several gases. 
sation nuclei or dust particles ("surfaces") we have a situation in which 
heterogeneous heteromolecular nucleation theory applies. ' 
molecular nucleation may be the most dominant nucleation process of droplet 
formation for an atmosphere with RH <loo%, since the nucleation threshold 
(required supersaturation) for heteromolecular nucleation can be much 
lower than for nucleation with pure materials (homomolecular). Other 
processes for the aerosol formation such as chemisorption, adsorption, 
and surface heterogeneous catalysis will not be discussed here. 

In a complicated 

For a completely dust-free atmosphere ( or 

For an atmosphere containing conden- 

This hetero- 

The formation of aqueous sulfuric acid droplets is a typical example 
in which droplets can be formed in the atmosphere with RH far below 100% 
and activity (PIPcoex. 2 so 4' where 'coex , H 2 S 0 4  
the pure H 2 S 0 4 )  far less than one for H2S04. The concentrations of the 
trace gases in the earth's atmosphere are measured in parts per million 
or parts per billion. 
with very low volatility; however, most of the atmospheric trace gases 
have high vapor pressure and their concentrations are not sufficient to 
allow heteromolecular nucleation out of the gas phase. 
reactions, combined with radiation or other energy input, are required 
to produce reactants with low vapor pressure which then mix with water 
vapors to form new aerosols (seeoFig 1). The trace gas SO2 has very 
high vapor pressure (4 atm at 25 C ) .  In the presence of water vapor and 
oxidants, A SO may mix with water vapor and undergo heteromolecular 
nucleation $0 form aqueous sulfuric acid aerosol. 

is the vapor pressure over 

Heteromolecular nucleation requires gaseous constituents 

Then chemical 

For binary systems, with this heteromolecular nucleation approach, 
we have studied the initial stage of aerosol formation for various poll- 
utants" ' ' (H SO 
Jupiter and Ve2us4'; 72(NH3-Hq0,%2S04-H20, HCL-H20, etc.) . 

In a ternary system, several distinct characteristics exist which a 
binary system does not present (for detailed discussion, see ref 2 8 ) .  
Here we summarize those distinct characteristics as follows: (1) the 
nucleation rate for a ternary system is dependent not only on the relative 
humidity but also on the composition of the other two components at a 
fixed relative himidity; (2)  in a ternary system, the effect of temperature 
on the aerosol formation is more significant,29; and (3)  chemical reaction 
is more likely to occur in a ternary system. No attempt has been made to 
calculate the nucleation rate for a ternary system since there is not now 
sufficient thermodynamic data available to carry out the theoretical study. 

Other problems associated with the study of heteromolecular nucleation 

H 0, HNO -H 0, etc.) and the cloud-base levels for 

theory will be discussed in the next section. 
measurement for heteromolecular nucleation study was performed by Flood 
for ethyl alcohol-water mixtures;' the experimental results agree with 

The only experimental 
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theoretical prediction. Other e erimental studies for H2S04-H20 
and ethanol-water are in progress .? 
B. Relative humidity greater than 100% 

There are three major phase transitions which can occur in the atmosphere 
with REI > 100%: 
of ice crystals from water droplets; and the formation of ice crystals 
from water vapor. 
largely depends on the change of physical parameters such as pressure, 
temperature, water concentration, etc., which is not like the situation for 
RR <loo%, where the development of the supersaturated state is largely 
dependent on chemical (photochemical) reactions. 

the condensation of water vapor to droplets; the formations 

The development of the supersaturated state for nucleation 

Heterogeneous nucleation on soluble droplets is responsible for the 
condensation of water vapor to dropleto. In comparison with other nucleation 
processes in the atmosphere, heterogeneous nucleation on soluble droplets 
is the least controversial since most theories and experiments for this 
process are in good agreement." There are two effects of vapor pressure 
that must be considered in any treatment of the growth of droplets on a 
soluble particle: (1) the solution effect; and (2) the Kelvin effect. 
As mentioned in the previous section, vapor pressure changes over a solution 
as contrasted to over a pure liquid (heteromolecular effect). 
the vapor pressure of water is less over aqueous solutions than over pure 
water; thus one requires less saturation than expected for pure water. 
Based on the thermodynamic argument, because of the Kelvin effect, one 
requires less saturation for the larger droplet. Therefore, from these 
two effects, droplets in a cloud can grow much more easily than can droplets 
undergoing the homogeneous nucleation process. A simple expression for 
the relationship between the supersaturation for water, and the solution 
effect and the Kelvin effect may be expressed as follow2 

For example, 

where M is the molecular weight of water vapor, y the surface energy of 
the droplet of solution, R the gas constant, r the radius of the droplei, 
p the density of the droplet of solution, and a the activity of the sub- 
stance dissolved in water as defined in the last section. If one assumes 
that Raoult's Law governs the equilibrium vapor pressure over the solution 
instead of the measured activity a, then the supersaturation can be 
written as 

where m' is the mass of solute, W the molecular weight of solute, and i the 

.. - 
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Van't Hoff factor for the degree of dissociation of salts. 
fitst- used by KGhler,' ' modified by Wright ,' 
and Mason.' ' 

This treatment was 
and re-examined by McDonald) 

Here we would like to point out that this process of heterogeneous 

For droplet growth on soluble particles 
nucleation on soluble droplets does occur in the atmosphere for RH <loo% 
for aqueous solution droplets, 
involving solid phase, Eqs. (4a) and (4b) cannot be applied directly 
because the production of a crystalline phase may require additional 
supersaturation in the solution, 
Winkle2 ' to stud 
"mixed particles" of soluble and insoluble particles. 

In order to form ice crystals from pure water homogeneously, the water 
must be supercooled to at least -40°C.3g 
crystals which form in clouds with temperatures much higher than -40° 
will be a result of heterogeneous nucleation. 
pressure, water content, and available surfaces, three major mechanisms 
are responsible for the formation of ice crystals in the atmosphere: 
(1) hersion nucleation (nucleation of freezing by a particle hersed 
in water); (2) deposition nucleation (nucleation of freezing by the deposi- 
tion of water vapor on surfaces); and (3) contact nucleation (nucleation 
of freezing induced by a particle during first contact with supercooled 
water>.40 

An empirical formula was deduced by 
the growth law of atmospheric aerosols involving 

Therefore, the majority of ice 

Depending on temperature, 

Most studies of ice formation by heterogeneous nucleation processes 
derive from the basic concept of classical homogeneous nucleation theory - 
a macroscopic-thermydynamic approach. Theref ore, some weaknesses 
of the classical nucleation theory, e.g., the use of bulk surfaoe tension 
values €or microscopic nuclei, also occur in the study of heterogeneous 
nucleation. Furthermore, because the nucleation of foreign surfaces 
involves an additional degree of freedom, e.g., the nature of the nucleating 
surface, heterogeneous nucleation processes are more complicated to study 
than are homogeneous processes, and additional problems have been encountered 
such as the use of contact angles to describe equilibrium conditions for 
an embryo on a heterogeneous surface, and the difficulty associated with 
the treatment of the roughness of the surface. Detailed discussion of 
problems associated with heterogeneous nucleation processes will be pre- 
sented in the following section. 

IV. PROBLEMS ASSOCIATED WITH VARIOUS NUCLEATION THEORIES 

In this section, selected problems associated with various nucleation 
theories are examined in detail. 
use the Fisher droplet picture2'" and measured values of the second 
virial coefficient to determine the "microscopic" surface tension for 
small droplets. 
used in the classical theory to calculate the nucleation rate. This 
approach circumvents such controversial problems as rotational, translational, 
configurational, and replacement partition function and gives excellent 
agreement between experimental measurements and our theoretical calcu- 
lations of the nucleation rates for various substances. For heteromolecular 
nucleation theory we discuss the surface enrichment effect for a binary system, 

For homogeneous nucleation theory we 

The estimated "microscopic" surface tension can then be 
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"microscopic" surface energy and hydration effect on small droplets, and 
their effects on calculations of the nucleation rate. For the formation 
of ice crystals we present a model to study heterogeneous nucleation on a 
substrate. This model gives an equilibrium concentration ( aexp[-AG/kT], 
where AG is the free energy of embryo formation) without 
scopic thermodynamic parameters such as "contact angle," etc. 
approach for studying this heterogeneous nucleation process is qualitatively 
discussed. 

Involving macro- 
A general 

A. Homogeneous nucleation theory 

As we pointed out before, the "microscopic surface tension" is one 
of the most important parameters for studying nucleation theory. 
adopt the Fisher droplet picture for studying "critical phenomena" to 
vapor-to-liquid nucleation theory of pure fields, and show how, from the 
static equation of state, one can determine some parameters, e.g., "micro- 
scopic surface tension," entering the theory of nucleation, a time-dependent 
process. 

We 

Fisher's droplet picture for the gas--tc?-liquid phase transition 
phenomenon 
The parameters used in this model can be determined by experimental measure- 
ment of the critical exponents.44 
from the critical point to the triple point has been examined by considering 
the equation of state c6and condensation by impinging in a dense medium." 
The agreement between this model and experimental data for the equation of 
state is 1% for water from the triple point to the critical point, and there 
is no essential difference for different treatments of the impinging rate. 
Here we would like to summarize the advantages of this model as follows: 
(1) controversial problems, such as the rotational, translational, configura- 
tional, and replacement partition function can be circumvented by use of 
this model; (2) this model covers a temperature range from the triple point 
to the critical point; (3) the %dcroscopic" surface tension can be esti- 
mated; and (4) the simplicity of this model means that it can be easily 
adapted for practical research problems. 

has been applied to study gas-to-liquid nucleation processes. 2 '  42'43 

The validity of extending this model 

We now outline the Fisher droplet picture and the formulation of the 
estimate of the microscopic surface tension for a small droplet. 
energy of a liquid drop containing n molecules can be written in 
form as Eq. (la), and the equilibrium concentration C(n) can be expressed 
as Eq. (lb). With the assumption that the excluded volume effect between 
clusters is negligible, the equation of state for the infinite system is 
a generalization of the ideal gas resuls, P/LT = C(1) = N/V, to a mixture of 
ideal gases with the components being the subset of all clusters with one 
molecule, all clusters with two molecules, all clusters with three molecules, 
etc. Thus the pressure of the system is 

The free 
the general 

n 
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and the density of the vapor p = aP/av = [aP/aln(y)]/kT is given by 

m U 
Yn 1-T xn 

P = q o b  
n= 1 

(5b) 

Note that the critical point is defined at x = y = 1, where x = 1 defines 
the critical isotherm (T = Tc) and y = 1 defines the coexistence curve. 
With Fisher's droplet picture, the parameters T and u can be determined by 
directly measur d critical i ices [e.g., along the critical isotherm: 
(P,-P> (vc-u) '-' = (~~-11)~'~: along the coexistence curve: (p,-p) Q 

(Tc-T)% = (Tc-T)B, where T , p  and )J are the critical temperature, critical 
density, and critical chemicsl Sotentis1 respectively. ] For water4 the 
critical exponent 6 is found experimentally to be 4.3, giving a value of 
T = 2.23, similarly, B has been found to be 0.35, resulting in a value of 
u = 213. Due to the universal nature of fluid systems near the critical 
region," all the critical exponents for fluid systems have the same value. 
Here we use T = 2.23 and (5 = 213 for our calculation of the 'lmicroscopic 
surface tension." The extimate of the microscopic surface tension can be 
determined by evaluating In x (see Bq. (3)). 

From Eqs. (5a, Sb), the compressibility 

U 1-T n n U 
P/pkT = (1 n x yn) / (1 n x Y -T n 

factor is 

Except near the critical region, for nearly ideal gases, n = 1 and n = 2 
are the most important contributions to the compressibility factor. 
along the coexistence curve (y = 1) Eq. (6) can be approximated by 

Thus, 

P/pkT (X + 2-T~2u) / (X + 2 1-Tx2U) (7) 

Also,  the compressibility factor can be expressed by the virial expansion 

where B = second virial coefficient, C = third virial coefficient, etc. 
With u - 213 and T = 2.23 determined experimentally as mentioned above, In x 
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can be evaluated from Eqs. (7) and (8). We obtain 

1 -4.69 (B lnx-- 0.58741n 1 + 2(B:; 

The nucleation rate predicted 
reference (2) and can be expreseed 

by Fisher's droplet model is derived in 
as 

r(x) is the Gamma function, 

where P1, S1, and are partial ressure, surface area and mass of single 
molecule, and A - a n  y)/ [In XI 'I8 (scaled supersaturation2). For 0 - 213 
and f = 2.23 and small A, Eq. (10) can be approximated as 

J - 3.4-P1S1q0(2mnkT)+ Iln x 13*85 A6*7 exp(-0.148 A-') 

The results of the ratio of the nucleation rate predicted by Eq. (11) to 
that predicted by the "classical" theory for eeveral substances are presented 
in Table 11. Data for the calculations were obtained from Dawaon et al. ,12 
Jaeger et al., l3 and Katz and Ostermeyer. '' Values for the second virial 48 
coefficient were either obtained from the compilation by Dymond and Smith 
or calculated from the tables in Hirschfelder, Curtiss and Bird." 

Note that for the substances listed in Table 11, agreement between 
theory and experiment is remarkably good, particularly in view of the extreme 
sensitivity of the calculations to small changes in the parameters. 

We might mention that the calculations for ln(x) could be greatly 
refined. For example, the third and higher order virial coefficients could 
be considered, however, the calculations which we have carried out are not 
intended to be more than order-of-magnitude estimates, given the lack of 
precise data for vapor pressures and virial coefficients. 

It should also be noted that the experimentally determined nucleation 
rates may be imprecise due to impurities in the nucleating substance. 
leads to processes such as heterogeneous or heteromolecular nucleation or 
both, which will greatly enhance the nucleation rate, and thus lead to experi- 
mentally measured values of required supersaturation which would be much 
lower than those required for pure homogeneous nucleation. 

This 

In conclusion, from our "microscopic" surface tension calculation, 
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it is our observation that classical nucleation theory can be considered 
as adequate, provided the appropriate value of the "microscopic" surface 
tension is used. 
theories may be due to the difference between the surface tension of a bulk 
liquid and that of a small droplet. 

B. Heteromolecular nucleation theory" ' 

The discrepancy between the "classical" and the "Lo the-Pound" 

To study the heteromolecular nucleation theory for a binary system, one 
generally expresses the formation energy of a droplet consisting of n water 
and 5 low-volatility reactant gas molecules: A 

where pc = chemical potentials of the two molecular species, if gas and 
liquid are in equilibrium over a flat mixture surface, p = actual chemical 
potentials in the supersaturated atmosphere; S = surface area of the droplet, 
depending on the number of molecules n and %; y = concentration-dependent 
surface tension for the droplet; and #= %/(nn+na) :mole fraction. Again, 
a closer exahwtion of the parameter of surface ension for small droplets 
is most desirable. 
static thermodynamic equation of state (including the second virial coeffi- 
cient) can be used to determine the "microscopic" surface parameter in 
sutdying heteromolecular nucleation theory for binary systems. 
droplet consists of nA and nB. 
a given second virial coefficient, B(X). 
for small droplets can be estimated. 
calculated microscopic surface tension can be 30% lower than the measured 
bulk liquid surface tension. 

As in the study of homogeneous nucleation theory, the 

Here the 
For a fixed mole fraction, X, there correxponds 

A preliminary study" shows that the 
Thus, microscopic surface parameters 

Other problems associated with the study of heteromolecular nucleation 
theory for binary systems result 
system in a small droplet, such as the surface enrichment effect and the 
hydration effect. 

from the chemical properties of a binary 

A correct heteromolecular nculeation theory for binary systems must 
take into account the fact that surface tension in general depends also on 
the composition of the liquid droplet. For example, in an ethanol-water 
solution, surface tension decreases with increasing ethanol concentration. 
Furthermore, by the Gibbs adsorption equation;l the concentration of the 
ethanol molecules is stronger on the surface than in the interior of the 
liquid (surface enrichment effect) and thus the surface tension is less. 
Recently, Stauffer et al. ," have introduced a material independent con- 
tinuum theory to study the surface enrichment effect for the small liquid 
droplet. 
free energy contribution proportional to the square of the concentration 
gradient. For ethanol and water, this treatment of the surface enrichment 
for a small droplet provides a 42% smaller contribution of the surface 

~ 

In this theory, the variation of composition is assumed to give a 
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energy to the formation energy of a amall droplet. 
has been tested by Monte Carlo methods for the lattice gas models0 and the 
agreement is good. 
have included both the spatial composition variation and the curvature 
effect for small droplets, 
tension" consideration estimated from the second virial coefficient, one may 
speculate that of the 42% smaller contribution, 30% may be due to the curva- 
ture effect and 12% may be arrived by the spatial composition variation. 
an ideal binary system the surface enrichment effect is not important, but 
for systems like ethanol-water, NH -H 0 and H SO4-H20 the surface enrichment 
effect needs to be examined. 
when studying the heteromolecular nucleation process involving H SO -H 
is the hydration effect in the liquid mixture droplet. 
recently constructed the free energy surface for a droplet containing nA 
water molecules and H SO molecules. In their study, the surface predicts 
the existence of staae 4 Sb4 hydrates in the vapor phase and the number of 
hydrates has been calculaged for different relative humidities. Shugard 
et al., s4 extended this study of hydration effect to heteromolecular nucleatio:: 
for the binary system H SO -H 0 and found that a finite nucleation rate 
predicted with a relati4e k d d i t y  of 50% and H2S04 vapor activity of 10 . 
This result gives a nucelation rate higher by a factor of Id than the- 
previous calculations made without considering the hydration effect. 2 1  = 
correction for surface enrichment and curvature effect were included in any 
of these calculations. The hydration effect for a relative humidity much 
greater than 100% would be more significant for the study of nucleation. 

C. Heterogeneous nucleation on substrate 

This continuum theory 

These surface enrichment effect correction calculations 

Taken together with the "microscopic surface 

For 

An aadi?3onal eqfect that should be considered 

Heist an8 &sia have 

13" 
No 

The simplest case for the study of heterogeneous nucleation on a sub- 
strate is to consider an ice embryo in the form of a spherical cap forming on 
a plane solid surface. Here we briefly review the basic approach (classical) 
often used to study thirr nucleation process and discuss the problems asso- 
ciated with the parameters entering into the calculation of nucleation rate. 
In classical mcleation theory, the nucleation rate is contributed by the 
product ofthe kinetic coefficient and the exponential function of the free 
energy of formation of a critical embryo on the nucleating surface (exp - 
bG*/kT). 
in general, in the order of magnitude of 40kT or more, which gives an exponen- 
tial factor on the order of magnitude lo-' 
AG* will give a change in the nucleation rate of two orders of magnitude. 
Therefore, AG* is a more sensitive parameter for studying the nucleation rate, 
and our discussion will be largely devoted to this quantity. 

The free energy barrier (M*) for the formation of a new phase is, 

or smaller. A 10% change of 

The free enerq50f formation of an embryo on a plane solid surface is 
usually written as 

where AG12 is the free energy difference (per unit volume) of phase 2 between 

, . .. 
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matter in state 1 and matter in state 2, y is the surface free energy of 
the interface between phases i and j, V isibe volume and S is the surface 
area. 
contact angle 6 (see Fig 3 ) .  
is used to determine the free energy of a critical embryo as follows 

The cap dimensions can be specified in terms of the radius r and the 
The contact parameter m = cos @ =(y13-y23)/y12 

3 2 AG* = (4v12/3AG12) f(m) 
2 f(m) - (2 + m) (1 - m) 

Thus the essential parameters for the free energy of a critical embryo are 
the surface tension y12 and m. Other nucleation processes, such as deposi- 
tion nucleation on insoluble particles, and contact nucleation, are based 
on this approach to determine the free energy of an embryo. 

Most calculations of nucleation rate have used the bulk thermodynamic 
properties, such as the bulk liquid surface tension and the contact parameter, 
€or the evaluation of the free energy barrier. 
like to point out a serious defect in this approach €or studying hetero- 
geneous nucleation theory. First, the use of bulk liquid surface tension 
€or the surface free energy of a small cluster is not well justified. 
Again, a 10% difference in the estimation of the surface tension y will 
give a 30% change in AG*, which can lead to a change of the nucleaggon rate 
of seven or more orders of magnitude. Secondly, the height of a critical 
embryo above the nucleating surface is, in general, about 10 A or less, 
which corresponds to a thickness of few molecules. Thus the concept of 
contact angle applied to the study of heterogeneous nucleation on substrate 
is ambiguous. Even though there are experimentss6 in good agreement with the 
theoretical predictions, one simply cannot take this theoretical interpre- 
tation too seriously before a closer examination of these parameters has been 
made. 

At this point, we would 

Here we would like to propose a model for the study of heterogeneous 
nucleation on a substrate to clarify some of the ambiguities mentioned above. 
Binder and nohenberg' 
Carlo calculations, to study the surface effects on magnetic phase transi- 
tion. 
cluster (a cluster that touches a free surface) can be expressed as 

recently have derived a cluster model, based on Monte 

In their cluster model, the free energy for the formation of a Surface 

AGn - -n*kT*ln(y) - n'*kT*ln(x) + chl-nul + .r'ln(n) + const (15) 

where the first two terms are exactly the same as the first two terms in 
Eq. (la) which corresponds to the first two terms in Eq. (13); the third 
term describes the interaction of the interface between the surface cluster 
and the touched surface which corresponds to the third term of Eq. (13). 
(hl is the field and c is a constant.) The logarithmic and constant terms 
are the correction due to the configurational entropy, vibration contribu- 
tion, etc., which are analogous to the last two terms in Eq. (la) in the 
bulk. Here 0. <a <1, and O.l<ui <1, for spherical cluster U = 2/3 and 
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01 = 113. 
semi-phenomenological and easily applied to practical research problems; (2) 
it is general (the model includes the entropy corrections and other possible 
contribution& and (3) it avoids the bulk parameters such as surface tension 
and contact parameter. 

The advantages of this propored model are that (1) it is simple, 

To determine these parameters (u,ul,f',x,chl) used for the nucleation 
study, the experimental data of the correctly chosen thermodynamic properties 
can be used. 
indices, and x can be determined by the second virial coefficient as demon- 
strated in the previous sections. 
and it can be approximated as (3/47?) qf3?' where Vo is the volume per 
molecule. 
like to discuss the background concept in the following paragraph. 

For example, u,~I, and T' can be determined by the critical 

ter c is a geometric constant 

The determination of hl is rela?ively a new approach and we would 

Similar to the method for determination of "microscopic surface tension" 
by using the virial coefficients for homogeneous nucleation theory, the 
second gas-solid virial coefficient 3 
interaction parameter hl. BZs is defzzed as 

can be used to determine the interface 

*ere W is the potential of average force for a single adsorbate molecule 
interacting with the adsorbent and ' f us) is the set of chemdeal potentials 
of the adsorbent. 
action energy of the adsorbate molecules as the sum of all interactions with 
the molecules of the adsorbent averaged over all allowable configurations 
of the adsorbent molecules, the second gas-solid virial coefficient B2s 
does implicitly contain the information of the interface interaction para- 
meter h (the energy parameter generated by the interaction between the 
adsorbent and adsorbate molecules). 
the interface interaction hl, higher order gas-solid virial coefficients 
are needed, e.g., B33 which contains the average interaction between two 
adsorbate molecule8 and the adsorbent molecules. For a nearly ideal gas 
the interaction parameter h can be obtained from the following equation 

Since the potential of average force constitutes the inter- 

I To obtain more accurate information on 

1 

= n kT/P B2s ads 

where n 
A detaifg8 expression for h 
approximations similar to dose of Eqs. (6) and (7) 

is the number of moles adsorbed and P is the bulk pressure. 
can be obtained from the above equation with 

0 01 U - c(x2 +x2 z2 2 5  / (x + x2 2') B2s 

c 
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where z = ln(chl), 

gases on carbon. * No quantitatgte calculation for the determination of 
h 
a h e  for studying the heterogeneous nucleation on substrate. 
recommendation that such experimental studies (e.g., apply gas chromato- 
graph to obtain B 
ation of the intezface interaction parameter hl. Other approaches involving 
the available thermodynamic quantities (such as the isosteric heat of adsorb- 
tion and adsorbtion isotherms) to evaluate the interface interaction parameter 
have been studied for the interaction between water vapor and pure silver 
iodide in the vicinity of saturation.*' This new approach which applies 
other related thermodynamic properties to the determination of the inter- 
face interaction parameters and which avoids the usual approach by using 
the bulk liquid surface tension and contact parameters may provide a better 
insight for the study of heterogeneous nucleation. 

Most experimental data of B are reported for inert gases and organic 

has been made because there is no experimental measurement of BZs avail- 
It is our 

for water on AgI) should be performed for the determin- 

V. CONCLUSION 

There is little doubt that the nucleation processes play a significant 
role in the study of atmospheric sciences. 
100%. the heteromolecular nucleation process gives the mechanism for the 
initial stage of aerosol formation. 
and in the stratospheric atmosphere is to be understood fully heteromole- 
cular nucleation processes cannot be neglected. 
than loo%, the heterogeneous nucleation processes (either on soluble or 
insolbule particles) are the dominant mechanism for the formation of cloud 
droplets and ice crystals. 
phenomena in the atmosphere appears to be fairly well recognized, the basic 
theory for various nucleation processes is not well understood. 
study of homogeneous nucleation theory, a new approach for the determination 
of the parameters entering in the calculation of nucleation rate is presented 
and the theoretical predictions are in good agreement with the experimental 
measurements. 
considered as adequate, provided the appropriate value of the "microscopic" 
surface tension is used. 
a heteromolecular nucleation theory for binary systems and of heterogeneous 
nucleation on a substrate to determine the parameters used for the study of 
nucleation theory. 
able to obtain more experimental measurements for the necessary thermodynamic 
parameters and nucleation rates. 
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Fig. 3 Heterogeneous Nucleation on a Substrate : Embryo 2 on Nucleating 
Surface 3 i n  Parent Phase 1, where r is the radius of the embryo 
and e is the contact angle. 
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TABLE 1 

Ratio of nucleation rates measured experimentally 

t o  nucleation ra tes  predicted by c l a s s i ca l  theory 

Substance 

H2° 

C2H50H 

"3 

'6'6 

CHCl3 

CC13F 

Substance 

H2° 

CH30H 

C2H50H 

"3 

'gH6 

CHC13 

CC13P 

TABLE I1 

Comparison of r a t io s  of nucleation r a t e s  

(J: calculation from "microscopic" purface 
tension) 

JIJclaes 'expIJclass Temp (OK) s - PIPo 

323 2.58 lo1 lo4 

313 1.4 lo-6 loo 

313 7.39 lo4 lo5 

240 2.8 l o l l  10l2 

230 100 lo8 lo8 

323 3 10l2 10l8 

240 5 
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ABSTRACT 

A r e v i e w  o f  t h e  c u r r e n t  me teoro log ica l  t h e o r y  
o f  d r o p l e t  growth i s  p r e s e n t e d .  Some comparisons 
w i t h  exper iment  a re  e x h i b i t e d ,  and good agreement 
i s  found .  The t h e o r y  i s  p r e s e n t e d  so a s  t o  
emphasize  i t s  l o g i c a l  development  f rom b a s i c  
p h y s i c a l  i d e a s .  It is c a s t  into a v e r y  s imp le  form 
which can be used t o  r e v e a l  t h e  s i m i l a r i t i e s  o f  
v a r i o u s  o t h e r  forms  appear ing  i n  t h e  l i t e r a t u r e .  
A f ew s p e c i a l  f o r m u l a s  are  d i s p l a y e d  which a r e  
u s e f u l  i n  c e r t a i n  p r a c t i c a l  a p p l i c a t i o n s .  Some 
i m p l i c a t i o n s  of t h e  t h e o r y  regard ing  s i z e  d i s t r i -  
b u t i o n  broadening a r e  d i s c u s s e d .  The t h e o r y  i s  
compared w i t h  measurements o f  t h e  growth o f  water  
drops  i n  t h e  o n e - h a l f - t o - t e n  micron s i z e  range I 

which were made i n  Argon and a i r  by l a s e r  s c a t t e r -  
i n g  t e c h n i q u e s .  S c a t t e r i n g  f rom a Re-Re ( 6 3 2 8  8 )  
l a s e r  o f f  of drops  produced by  homogeneous nuc lea -  
t i o n ,  and t h e r e a f t e r  grown a t  s u p e r s a t u r a t i o n  r a t i o s  
rang ing  f rom about  1.2 t o  3 . 6 ,  was compared w i t h  
t h e  Mie t h e o r y  p r e d i c t i o n s  and r a d i u s  v s .  t i m e  
c u r v e s  deduced.  Genera l l y  good agreement was 
found be tween  t h e  c o n v e n t i o n a l  t h e o r y  o f  drop 
growth and exper imen t .  The t h e o r y  was f i t  u s i n g  
one parameter  i n v o l v i n g  b o t h  condensa t ion  and 
thermal  accommodation c o e f f i c i e n t s .  

INTRODUCTION 

tion) is divided into two parts: (1) the theory is presented 
as it is normally used by atmospheric scientists, that is in 
application to clouds, and ( 2 )  a brief comparison with experi- 
ment is limited to cloud chamber work performed by J. Carter in 
the UMR Cloud Physics Center. 

the basic theory rather than on the history of its development. 

The present treatment of dropwise condensation (or evapora- 

In (1) the emphasis has been a step-by-step exposition of 
- 

.. . 
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It perhaps should be mentioned at the outset that the equations 
describing growth are subject to various simplifications 
peculiar to their atmospheric application. 
important of these resides in the fact that at any given time a 
cloud droplet generally exberiences a very small supersatura- 
tion. 
simplification in mind, and appropriate modification must be 
made for larger supersaturations (or undersaturations). 

One of the most 

"Final" equations have generally been written with this 

GOVERNING EQUATIONS 

cal to adopt the macroscopic point of view and write down the 

In doing so it is assumed that the drop diameter is rather 
greater than a mean free path. This regime usually covers cases 
of interest in cloud physics, and is amenable to extensions into 

In treating cloud droplet growth it is perhaps most practi- 
I continuum equations governing the growth or evaporation process. 

- *  the "transition" regime. 

Briefly, the process of growth involves the transport of 
mass (vapor) toward the drop, release of latent heat at the 
drop surface, a subsequent heating up of the drop, and as a 
consequence of the latter, a thermal energy transport away from 
it. The continuity of water vapor concentration, n (moles/vol.), 
outside the drop may be written: 

-+ an V * I  = -= 
+ 

where I is the molar flux of vapor given by, 

-+ 
X + -(n+n )D 

I = & [Vx + a ' ( ~ ) V l n T l + ~ I ~  

Here x is the mole fraction of vapor, n the vapor molar con- 
centration, D the diffusion coefficient of water vapor in air, 
T the temperature field (governed by a corresponding equation), 
I the molar flux of air, n the molar concentration of air, 
and a' (x) the thermal diffusion factor. 

for normal atmospheric situations. Water vapor is a dilute 
solute in the atmosphere, so that the term n/n 
compared with unity. 
flow, (Fuchs 1959)l. Thermal diffusion and its inverse are 
small enough to be neglected (Neiburger and Chien, 1960). The 
motion of the air relative to the drop is almost always ascri- 
bable to drop fall, and v can be inferred from the Stoke's 
law velocity. 

-+ 
8 8 

Considerable simplification of this equation is justified 

can be neglected 
[This corresponds to negfecting Stefan 

g 
, 
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This effect is negligible up to about 10 microns (Squires, 1952). 
Beyond this size the effect of fall can be incorporated semi- 
empirically (Frossling, 1938; Squires, 1952) by a ventillation 
factor which multiplies the diffusion coefficient. It is usually 
a minor correction inasmuch as its effect on condensation drop 
growth is most pronounced when the latter is no longer the 
dominant growth mechanism. 
multiplied by the approximate factor, 

[According to Squires D or K can be 

1 + 0 . 2 4  a, ( 3 )  

where Re is the Reynolds number]. 

one of simple diffusion, 
With the above simplifications the flux equation reduces to 

2 DV P g ,  (4)  

where p is the vapor density and D is regarded as constant. 
Arguments similar to the above apply to heat conduction leading 
to 

(5) aT kV2T = 

where k is the thermal diffusivity of the air-water vapor mixture, 
or simply that of air. Three of the four boundary conditions 
required to specify the solution can be written down immediately. 

P(,,t> = P,W (6) 

where p 
ture (wRich can be functions of time), a the drop radius, K the 
thermal conductivity of the gas, L the latent heat of condensa- 
tion, and Cd(a) the heat capacity of the drop which is to good 
approximation characterized by the uniform temperature T . 
Fuchs (1959) has shown that heat loss by radiation can b$ neglec- 
ted for the size range here contemplated. (Discussion of the 
third boundary condition is deferred). 

state. It is based on the assumption that the transients appro- 
priate to the diffusion problem are small enough so that the 
steady state profiles "follow" the outward motion of the drop 
surface. The transient regime is discussed by Carstens and 
Zung (1970), Nix and Fukuta (1973), and the use of quasi 
steady state criticized by Kirkaldy (1958). 

and T, are bulk values of the vapor density and tempera- 

I 
The final simplification invokes the idea of quasi steady 
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. With the above simplifications the flux equations reduce 
to : 

and 
v'p = 0; 

V2T = 0. 

The notion of quasi steady state does not rule out the possibility 
that p, and T- be slowly varying functions of time in (6) and 
(7). Condition (8) becomes simply, 

The steady state solutions to (9) and (10) are: 

P = ; (Pa- P,) + P,, 
and 

These solutions, incidently, are never attained since it would 
take an infinite amount of mass (and heat) to establish them. 
The solutions are necessarily poor far away from the drop. 
validity of the quasi steady state approximation resides (in 
part) in the fact that the "correct" solutions are achieved very 
quickly near the drop and, even though the drop derives the bulk 
of its mass from remote regions, its actual growth rate depends 
on the gradient at the drop surface. 

surface reintroduces time into what would otherwise be a 
steady state process (hence "quasi" steady state). This 
"growth" equation is : 

The 

Finally, the presumably slow outward motion of the drop 

where pg is the liquid density. 

Two somewhat different treatments of the growth process 
exist in the meteorological literature, 
above assumptions. They differ in that the most common approach 
assumes that the transport process is entirely controlled by the 
diffusion of mass and conduction of heat, while the alternate 
approach posits the possibility of additional control exerted 
at the liquid-vapor interface. 
final boundary condition at the drop surface. 

Both are based on the 

This difference appears in the 
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DIFFUSION CONTROLLED GROWTH 

In what is perhaps the most common treatment of drop 
growth (Fuchs, 1959; due to Maxwell), it is assumed that to 
good approximation thermal equilibrium between vapor density 
and temperature holds at the drop surface. In addition to its 
dependence on temperature, the dependence of thermal equilibrium 
both on drop curvature and dissolved salt often must be taken 
into account. We can write this radial dependence formally 
in terms of a saturation ratio, 

where p (a,m ,T) is the equilibrium vapor density over a drop. 
of radi8g a aad dissolved salt mass m and p (-,O,T) is that 
over a flat, pure surface. We theref8;e haveeqthe equilibrium 
condition: 

The temperature span involved in the applications is ordinarily 
sufficiently narrow to justify a linear relationship between 
p (a,O,T) and T, so that the final boundary condition can be 
wPBt ten : 

The constants b and c can be (and usually are) obtained by 
keeping linear terms in a Taylor expansion of the Clausius- 
Clapeyron equation. about Tm. 

growth equation: 
. The condition (16) completes the problem and leads to the 

where the liquid density is unity. Here we can identify the 
numerator as the "driving force" and the denominator as a . 
"resistance" composed of mass and thermal components. For 
constant ambient conditions, and supersaturation ratio, S, 
close to unity, a solution is: 

f 
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where 

i 

1 = 1 + b L  
Deff IT 

For temperature at about 3' C, the thermal tlresistancelt, 5, begins to dominate growth. 
the time in (18) into two parts, one associated with the 
thermal resistance. 

This can be seen by splitting 

With t-t +tT, we have: 
P 

(201 x dx 

V 

At 3OC the ratio t /t 

identified with the Kohler curve: 

is about 1, at 3OoC nearly 4 .  T P  
Finally it should be pointed out that SSat(a) is usual1.y 

where r* is a constant obtained fr m the Kelvin-Thompson equa- 

tion and discussion of the Kohler curve may be found, for ' 

example, in Fleagle and Businger (1963). 

KINETIC APPROACH 

tion (curvature effect) and ms(A/a 3 ) from Raolt's law. Deriva- 

GROWTH CONTROLLED BY DIFFUSION AND SURFACE KINETICS: DIFFUSION- 

In the previous development it was assumed that drop growth 
is controlled both by the rate at which vapor molecules are 
transported to the surface by diffusion, and the rate at which 
thermal energy is removed from the surface by conduction. This 
transport process can obviously be affected if, in the first 
case, vapor molecules do not always stick to the surface upon 
striking it (or are inhibited from evaporating), and, in the 
second case, if the gas molecules on the average acquire some 
reduced fraction of the surface energy upon collision. These 
possibilities naturally lead to a consideration of coefficients 
of condensation, evaporation, and thermal accommodation. 

The thermal accommodation coefficient, a, can be defined as: 

Ei-E r 
a = -  
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where according to Kennard (1938) Ei denotes the energy brought 
up to unit area per second by the incident molecular stream, 
E, that carried away by these molecules as they leave the wall 
after reflection from it, and E, the energy that this latter 
stream would carry away if it carried the same mean energy per 
molecule as does a stream issuing from a gas in equilibrium at 
the wall temperature Tw. 

densation coefficient in the context of water drops that may 
possess impurities, especially as such considerations may be 
important in cloud physics (Bartlett and Jonas, 1972). The con- 
densation coefficient can be taken to be the fraction of incoming 
vapor molecules that strike the surface and stick to it. The 
evaporation coefficient may be defined relative to the conden- 
sation coefficient as the fraction of molecular flux that would 
emanate from a pure surface at the same temperature (this being 
the condensation flux under equilibrium conditions at that 
temperature). 
similarly defined. The following simplified illustrative model 
may serve to fix these ideas. Consider a water surface upon 
which condensation (or evaporation) occurs. Let us for the sake 
of argument evaluate the fluxes involved from uniform (ideal) 
gas kinetics. For pure water (superscript zero) the flux is 

It is perhaps timely to discuss the evaporation and con- 

A relative condensation coefficient may be 

or 

Here Bc ( O )  is the condensation coefficient for pure water, G the 
average molecular speed, n the actual water vapor molecular con- 

(') the equilibrium concentration at the sur- centration, and n 
face temperature. The factor I ( O ) / 2  accounts for the fact that 
the condensation process itself establishes a net flow of vapor 
toward the surface which is not accounted for by kinetic term 
alone. Next, consider the surface of "contaminated" water. From 
a purely phenomenological point of view the condensation and/or 
the evaporation flux could be altered. The condensation term 
may be changed to 

eq 

where B L  is the relative condensation coefficient, o<B: gl/$c(o). 
Likewise the evaporation flux can be affected; that is the f lux 
that would,ordinarily evaporate off a pure surface is changed by 
a factor 8, (evaporation coefficient), i.e., 
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The new equilibrium "position" is, 
1 

and the shift in equilibrium, 

In terms of the displaced equilibrium, 

I 

with 8, Bc ( O )  the condensation coefficient for the contaminated 
surface. This illustration is only meant to define these 
coefficients in such a way as to correspond with common sense. 
Clearly the kinetics of the process, that is the rate at which 
equilibrium approached, is affected by the condensation coefficient 
(Bc=81: Bc ('I) alone, while the shift in equilibrium obviously 
requires a difference in Bc and Be . 

In the case of drop growth the introduction of possible 
surface control requires that the thermal equilibrium boundary 
condition (16) be replaced by mass and heat fluxes. The 
simplest technique, and that usually found in the meteorological 
literature (Langmiur, 1944; Fuchs, 1959; Carstens and Kassner, 
1968; Fitzgerald, 1970; Fukuta and Walter, 1970) consists of 
equating the molecular and energy flux determined from uniform 
gas kinetics to that calculated directly from Fick's and 
Fourier's law. This flux matching is done at the drop surface, 
or in the vicinity of a mean free path of it (Fuchs, 1959). 
This approach has been dubbed the "diffusion kinetic" by 
Smirnov (1971). A very thorough exposition of it is that of 
Fukuta and Walter (1970). 

is given by: 
1 Using this approach, the mass flux equation around the drop 
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Here Bc is the condensation coefficient, Ta is the temperature 
of the gas adjacent to the drop, Td that of the drop itself, 
and 7 the average molecular speed at the temperatures indicated. 
The addition of half of the Fickian flux on the right hand side 
rests on reasoning similar to that given in connection 
with equation ( 2 4 ) .  (The consistency of adding such a term 
is perhaps more easily seen away from the surface. 
gas the number of molecules traversing an imaginary plane is 
1 1 unT in one direction and 
course zero. If there is known to be a flux - D E  in the gas 

In a uniform 

in the other; the net flux is of 

then the uniform flux calculation can be made to--produce it if, 
to ;nY, one simply adds -TD an/ax.) 
intrinsic temperature dependence of Bc to get 

1 We next neglect the 

I 

The narrow range of temperatures also justifies the simplifying 
approximation, 

The approximate "connection" equation is : 

From the solution (12) it follows that, 

where, following Fukuta and Walter (1970) we have introduced 
the length k B P  
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Bc -1 B = Bc(l-+ . 
The departure from equilibrium is, 

and its magnitude is determined by the value of a/%, relative 
to unity. 

constructed so that it is valid in the opposite limits of free 
molecular flow (Kn>>l) and continuum flow (Kn<<l). It may 
thus be regarded as an "interpolation" covering the inter- 
mediate regime bounded by these two extremes. Smirnov (1971) 
(see also Shankar, 1970) discusses the degree of approximation 
achieved by this interpolation through the regime of inter- 
mediate Knudsen number. However, the chief merit of the model, 
at least in most cloud physics applications (Rooth, 1957), 
lies in its incorporation of surface effects via the condensa- 
tion and thermal accommodation coefficients. If B (and/or a )  
is sufficiently small compared with unity, significant surface 
control can extend well into the continuum regime - -  a regime 
where the theory purports validity. 
of these coefficients, the more important it is to ascertain 
their values, since they represent a tendency for surface 
control to be the rate determining process. Kn/B and Kn/a 
are the important numbers here, and as implied by eq. (32) 
they have to do with the validity of assuming the thermal 
equilibrium; Kn itself of course pertains to the 
validity of using Fick's and Fourier's laws. 
are near unity the distinction is unnecessary, but in this case 
growth through the regime of intermediate Knudsen number is 
sufficiently fast that one is usually justified in using the 
simpler approach [that is, eq. (17)l. 

to be the subject of some controversy (see for example Mills 
and Seban, 1967; Jamieson, 1965; or Amelin, 1966). Values have 
been measured (Alty and Mackay, 1935; Vietti and Schuster, 1973; 
Carter and Carstens, 1974;) that would not be insignificant in 
cloud physics applications (Fitzgerald, 1970; Warner, 1969). 

As exemplified by eq. (32), the diffusion-kinetic model is 

The smaller either or both 

If a and 8 

The actual magnitude of the sticking coefficient appears 
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In evaluating the energy flux around the drop we will 
follow the analysis of Kennard (1938), appealing to the same 
sort of assumptions invoked in evaluating the mass flux (the 
calculation is done for air): 

Et, is the translational energy of the incoming 

r=a 

molecules and 
Ei is their energy other than translational; E& and Ei are these 
quantities for the outgoing flux. The average translational 
energy of the molecules in a molecular stream is given by: 

The following identifications are made: 

? 

Et, = 2RTa and Et, - 2RTd. 
3 2 This puts n in moles/cm , and (1/4)n V in the moles/cm /sec, 

so that the energy flux is in cal/cm /sec (R is in cal/'K mole). 
Then, 

g 2g 

Now for an ideal gas 

where C 
PuttingVAT=Td-Ta and AE=Ei-Ei gives: 

is the molar speFific heat at constant volume. 

E ~ - E  i - (cv-3) (T~-T,). 
This leads to: 
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where y is the ratio of specific heat at constant pressure 
to that at constant volume. Using the solution (13) a result 
analogous to (29) is obtained: 

where, again following Fukuta and Walter (1970), we introduce 
the length Ea:  

The well-known phenomena of "temperature jump" (Kennard, 
1938) is given by, 

which is analogous to eq. (32). 

Now equations (34), (29), and the condition for thermal 
equilibrium, along with the usual. boundary conditions (11) 
( 6 ) ,  and (7) comprise the required six conditions to solve 
for the six "constants" Ta, Td, pa, peq(Td), p,, and T-. It 
is quicker, however, to exploit the idea of llcompensatedll 
coefficients (Fitzgerald, 1970; see also Carstens, 1972). 
Here the formalism of the simpler theory is retrieved 
by "compensating" the coefficients as they appear in eq. (17) 
in such a way that the growth law includes the above surface 
effects. In what follows the simpler theory is referred to as 
the Maxwell Theory with subscript "M". 

The flux computed from the diffusion-kinetic theory is, 

(36) a 
IDK e D(P~-P,)F* 

We write the Maxwellian flux as, 

where, if IDK and IM are to be equal, 
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It is easily shown directly from eq. (29) that, 

This, as Fukuta and Walter demonstrate clearly, is the key 
manipulation that causes the linear theory [i.e. based on a 
linearization of the thermal equilibrium condition, eq. (16)l 
to have such a simple form. 

C 1 ear 1 y , 
* D 
(a) = 1- 

and, analogously, 

Now the compensation of K and D insures that the flux is calcu- 
lated so as to satisfy conditions (28) and (33). But the power 
balance, eq. (ll), and growth eq. (14), in fact involve only 
flux terms. Therefore the Maxwellian approach gives the growth 
law, eq. (17), "correctly" with D and K compensated, i.e. 

where 

(Ssat(a) has here been assumed sufficiently close to unity to 
justify putting b Ssat= b in Deff). 
an equivalent form, resembling that of Rooth (1957), 

% It is easy to establish 

where a is a weighted average of I l a  and a g :  

* 
It is also clear that, Deff = Deff(1+II/a)-'. 
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! 

1 

Four contributions to the "resistance" may be identified 
[refer to discussion in connection with equation (19)], 

1 bL 1 '8 bL ' a  
R = ~ + T + D ~ +  -K a' (44) 

The last two represent the mass and thermal contribution to the 
surface resistance. At a given temperature the single parameter 
R suffices to account for surface effects. The slope b, how- 
ever, is responsible for an increasing thermal weighting toward 
Ra as temperature increases. 
equation ; 

(From the Clausius-Clayperon 

b 2 p'') (-)ML/RT, 2 ). 
eq 

Thus a low value of 8, for example, will have more of an 
effect at lower temperatures than at high. This effect exists 
aside from any intrinsic dependence of 8 or a on temperature. 
As mentioned in connection with equations (20) and (21) the 
weighting is about equal at 3 O C  and nearly fourfold toward 
Ea at 30 C. 

SOME SOLUTIONS 

I 

Although (40) or (42) is usually solved numerically 
(e.g.Brown and Arnason, 1973), a few solutions may be helpful. 
For constant ambient conditions, 

1 

which with SSat(x) given by eq. (22) can be solved by conven- 
tional integration (Carstens, et al, 1974). 

If the maximum value of Ssat, that is the critical supersatu- 
ration Sc, exceeds the applied supersaturation, S, then growth 
is inhibited, and the radius approaches a stable-equilibrium 
value, a,, corresponding to the smallest positive root of 
S-Ssat(a)=0. 
relaxation time corresponding to the approach of a to as 
obtained by linearizing Ssit around as (Sedunov, 1972), the 
argument being that 
bulk of its growth time is spent in this vicinity. 

If S is not too close to Sc, a rough idea of the 
can be 

if the drop attains a radius near as the 
Substituting 
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into eq. (45) gives, 

with 

At S=l, using the Kohler curve, eq. (22): 
7 

% -15 At 17OC with a=l, 81.036 we have &=1.65p; then for ms=10 
r(l)%l sec, and for m,=5.8~10-~~ gms, r(1)slO . 

gms, 
3 

For large drops where SSat(a)%l and a>>&, 

a % 2  = [ao +2Deff(S-l)pk:)(-)t]”. (493 

From eq. ( 4 2 )  it is clear that surface effects alone (Ssat%) 
can be taken into account by rescaling the radius: 

a+k = [ (ao+tf+2Deff (S-1) P$) (a) tl’. (50) 

If curvature and surface effects are small perturbations they 
can both be included by replacing II by II+r*/(S-l). 

DROP SIZE DISTRIBUTIONS 

It is safe to say that interactions between growing drops 
exist by virtue of their combined effect on ambient vapor 
density and temperature. Otherwise they can be regarded as 
isolated (Williams and Carstens, 1971). Therefore the above 
theory can be used in infer certain trends in the evolution 
of drop size spectra. This can be done using a simple two 
drop model. 

Consider two noninteracting drops of radius al and a2, 
where al > a2, growing under identical ambient conditions. In 
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addition, consider activated (free growing) drops where curvature 
dominates the effect of dissolved salts. 
a2 into eq. (42) and dividing yields: 

Substituting al and 

al a2 
al 

a2 

- P -  
l+k/a2 

The first factor on the right implies a narrowing of the spec- 
trum, and is associated with the basic geometry of the process; 
this term is responsible for the well known narrowing tendency 
of diffusive growth of drops. The second term implies a broad- 
ening tendency and is associated with surface kinetic effects; 
its effect diminishes as the drops grow larger. The first two 
factors together, (a2+%)/(al+%), imply a narrowing, but at a 
slower rate than that given by a2/al. The last factor implies 
a broadening, and is ascribable to curvature effects. There is 
also a dependence on the applied supersaturation via the 
"radius", R=r*(S-l)-l. The first and last factors will lead to 
a broadening if al 
significant broadening if S is such as to cause al to increase 
(growth) and a2 to decrease (evaporation), that is if S inter- 
sects (due, for example, to depletion) Ssat at the unstable 
equilibrium radius, aU, where a <a <a Elton et a1 (1957) 
nevertheless argue that this process is too slow to be of much 
importance in cumulus spectra. If the size distribution is 
localized around aU sufficiently to justify the expansion of 
eq. (46) (around au instead of a,) the broadening, 

1 '>R-'. But one would only expect 
-1 + a2- I 

1 
I 

2 u 1' 

l al - a2 = [a,(o) -a2(o)l exp(t/T) , 
is characterized by a (positive) relaxation time, 

The magnitude of T depends strongly on the value of S-1 where 
it "cuts" the distribution. At S - 1  'L (17OC) for example 
T 'L lo4 sec. 

While there is a tendency for the radial size distribution 
to narrow, no such tendency is implied for areal size distribu- 
tions, at least under growth conditions: 

At S-1 % on the other hand T 'L 10 sec. 
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* 
1-r /(S-l)a, 

1-r /(S-1)a2 
- (52) 

In this case there is a broadening tendency which diminishes as 
the radii become larger. As fall velocity is directly proportional 
to area (up to about 30 p), there is no diminution of relative 
fall velocities, but rather the possibility of an early increase. 
(Such a trend may enter into consideration of the "next stage" 
in the growth process, collision-coalescence, especially in 
light of the pronounced increase in collision efficiencies 
displayed by Klett and Davis (1973) in the region of closely 
spaced radii.) The divergence of the mass distribution may be 
similarly argued. 

The remarks made here are confined to direct consequences 
of diffusive growth on size distributions. 
nuclei upon which droplets grow can play an important role. 
Spectra are also affected by larger scale dynamics as found in 
clouds (Warner, 1970; Bartlett and Jonas, 1972). Mason and 
Jonas (1974) predicted drop size distributions agreeing with 
those of Warner (1969) on the basis of simple diffusive growth 
(k=O) applied to drops growing (and evaporating) inside spheri- 
cal thermals which ascend through the residue of their prede-- 
cessors. Fitzgerald, on the other hand, predicted drop spectra 
in continental clouds on the basis of eq. (40), with measured 
nuclei distribution using a closed parcel model. 

The spectra of 

COMPARISON WITH EXPERIMENT 

The experiments herein reported are a direct outgrowth of 
the work of Vietti and Schuster (1973a, b). Some preliminary 
results have already been discussed by Carter and Carstens 
(1974). 
do not apply direct1 to the atmosphere because the super- 

than those produced in clouds. Nevertheless the present analysis 
argues for the general validity of the conventional growth 
theory since one would expect the basic physical mechanism, and 
hence the theory describing it, to be the same at the low as at 
the high supersaturations, and moreover (with changes in con- 
stants) independent of the non-condensible gas employed. 

It is common to put the thermal accommodation coefficient 
equal to unity (Alty and Mackay, 1935), and we have done so here 
for both gases. 
well; even though we have some temperature spread we have not 
as yet been able to separate the two parameters. 

It should be mentioned that measurements reported here 

saturations pro 4 uce in a Wilson cloud chamber are much larger 

Other pairs of these constants will fit as 
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The experimental apparatus, laser, cloud chamber, etc., 
are the same as were used by Vietti and Schuster (1973a, b) 
and we refer to their articles for a full description. The 
droplets were generated by homogeneous nucleation in a Wilson 
expansion chamber and allowed to grow, after nucleation, at 
supersaturation ratios ranging from about 1.3 to 3.5. 
from a 6328 A He-Ne laser at 30' (off of the incoming beam) 
provided part of the experimental data. 
measurement within the chamberprovided the data needed to relate 
growth rate to bulk thermodynamic conditions. Details of the 
pressure and scattering intensity measurements are discussed 
by Vietti and Schuster. Also, these authors discuss the drop 
size distribution (which is narrow, due to the abruptness of 
the generation technique) as well as its influence on the sharp- 
ness of the Mie peaks. 

cluded that there is a fair agreement between their data 
and the standard growth theory (Fukuta and Walter, 1970). 
Furthermore, it is clear that such agreement can be secured 
with values of either sticking or thermal accommodation 
coefficients considerably less than unity. Our reason for 
looking again at these experiments and the analysis is to uncover 
reasons for what discrepancy exists between theory and experi- 
ment and attempt to improve the agreement. 
the agreement can be substantially improved, leading not only 
to more confidence in the theory but to a more precise estimate 
of the sticking and accommodation coefficients. 

The growth in Argon was measured under supersaturation 
ratios ranging from about 1.3 to 3.5. (Appropriate physical 
constants, diffusion coefficient, thermal conductivity, etc., 
were taken from Vietti and Schuster's work where the various 
sources can be found.) Seventeen runs were analyzed, two of 
which are displayed in figures 1 and 2. In fig. 1 the total 
pressure after nucleation runs from 1.37 x 106 dynes/cm2 at 
.3 sec. about linearly to 1.39 x lo6 dynes/cm2 at 1.0 sec; the 
corresponding temperatures are 6.4OC and 7.8OC. In fig. 2 
these values are 1.43 x 1D6 and 1.44 x lo6 dynes/cm2 at 11.2OC 
and 12 C. The dashed line denotes the theoretical prediction 
of growth without depletion of vapor and addition of heat due 
to growth. The solid line follows the data and the lower solid 
line denotes the course of the supersaturation ratio during 
the growth process. It is felt that the two runs shown are 
typical of all our Argon runs. While we did not investigate the 
matter in statistical detail, it would appear that there is no 
systematic difference between the agreements at low and high 
growing supersaturations. 

Scattering 

A continuous pressure 

From the analysis of Vietti and Schuster, it may be con- 

As will be seen, 

0 
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The air runs are shown in figures 3 and 4. In figure 3 
6 2 dynes/cm 

These 
the pressure and temperature at .4 sec are 1.26 x 10 
and 2.8OC, and at 1. sec 1.28 x 10 6 dynes/cm2 and 4OC. 
numbers for figure 4 are 1.5 

6 2 1.5 x 10 dynes/cm , 19OC. 
x lo6 dynes/cm2, 19 OC and 

The data of all runs can be fit, to the degree indicated 
in figures 1 through 4 ,  by ct = 1 and B = .022; they appear to 
be equally well fitted, for example, with ct = .1'and B = .11. 

The problem of "initial conditions" is important in using 
this technique. There is no guarantee that the first observed 
peak is actually the first Mie peak. This may be due to the 
possibility that the first peak, which is weak anyway, is not 
resolved. It may also be that the size distribution is just 
broad enough at the first peak ( . 4 5  microns) that it is washed 
out. In systematically decreasing the growing supersaturation, 
we have continuously scrutinized the data for the earliest - 
peak. In Argon we have identified the earliest peak as the first 
Mie peak on the grounds that the extrapolation of the growth 
curves through radius "zero" (embryonic size) always passes 
through the nucleation event, i.e. that very narrow portion of 
the supersaturation pulse during which the supersaturation is 
critical. Shifting the data by one peak, that is assuming that 
the first observed peak is really the second Mie peak, leads to 
an extrapolation which clearly recedes the nucleation event. 

the validity of the above extrapolation (i.e. that the growth 
does not drastically depart from the theory below 0.45 microns), 
as well as the fact that we simply never observe an earlier 
peak. In air, on the other hand, the Mie peaks had to be 
shifted in order to cause the curve to pass through the nuclea- 
tion event. The data for the air runs are not as clean cut as 
in Argon due to the difficulty of generating drops by homo- 
geneous nucleation in air. Also, while the fits at higher 
growing supersaturations are about as good in air as in Argon, 
there seems to be a systematic worsening, in air only, of the 
overall fit toward lower growing supersaturations. Further work 
on air is continuing. 

The analysis of error, especially in the data, is a 
difficult problem, and we have accepted Vietti and Schuster's 
values on this (1973a). They give about 4 %  on the evaluation 
of the theoretical curve. On the data, time resolution was 
within 5% on placement of the first few'data peaks and tends 
to decrease to . 5 %  toward the end of the run. Uncertainty in 
pressure measurement led to negligible error. Placement of 
the maxima and minima from the theoretical curves, we feel, led 
to a negligible error, especially since this error was non- 
systematic. Estimated drop counts were small enough to neglect 
vapor depletion and heat addition. 

Thus in Argon our identification o 5 F - T  t e first peak depends upon 
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CONCLUDING REMARKS 

The comparison between the theory herein presented and 
data is good, and indicates that the condensation and/or 
thermal accommodation coefficient should be small. We have 
chosen .022 and 1. for air and Argon. Work on air is continuing. 
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GROWTH MECHANISMS FOR , 

URBAN AEROSOL PARTICLES 

S. L. Heisler and S. K. Friedlander 
California Institute of Technology 

Pasadena, California 

ABSTRACT 

The general equation describing the dynamics of a cloud of small 
particles includes a t e r m  for growth from the continuous phase. 
process i s  of controlling importance in the dynamics of urban aerosols and 
is closely related to the visibility problem. 

This 

An experimental program has been initiated to determine the form of 
the growth law under conditions simulating the Los Angeles atmosphere. 

3 Experiments have been conducted in which hydrocarbons, sulfur dioxide 
and oxides of nitrogen were added to ambient Pasadena aerosol in a 60 m 
Teflon bag exposed to natural solar radiation. The ensuing photochemical 
reactions caused growth of the aerosol particles. 
t e r  was used to measure the size distributions of the aerosol a s  a function 
of time for particles larger than 0.30bm diameter. 

An optical particle coun- 

The changes in the size distributions with time were used to determine 
particle growth rates a s  a function of size and time. 
that the gas-to-particle conversion process consists of the formation of 
supersaturated chemical species in the gas phase followed by condensation 
of these species on preexisting particles. In the condensation process, the 
variation of vapor pressure of the condensing species above the droplet 
with size (Kelvin relation) must be taken into account: this effect leads to 
sizes below which condensation does not occur. 

The results indicate 

INTRODUCTION 

Reliable methods for relating the urban smog aerosol to its sources 
a r e  needed for the control of visibility and of human exposure to trace 
metals, organic substances, sulfates and nitrates. Visibility reduction by 
light scattering and health effects by deposition of particles in the lungs a r e  
complex functions of the aerosol size distribution. It is  necessary to be 
able to determine the manner in which the aerosol is  modified by various 
pr  oces se s . 

Particulate sources can be classified as  either primary or  secondary. 
Primary sources a r e  those which emit particles directly into the atmos- 
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phere. 
ticulate material in the atmosphere through gas -to-particle conversion. 
Much of the organic material, sulfates and nitrates in urban aerosols 
results f rom secondary processes and accounts for about one-half of the 
aerosol mass  during periods of moderate to heavy smog in Los Angeles (1). 
It is the goal of this research to  determine the manners in which the size 
distribution i s  affected by these secondary sources. 

AEROSOL DYNAMICS 

Secondary sources a r e  those which lead to the formation of par- 

The dynamics of a cloud of small particles can be described by a 
pa rtial integro - differential equation: 

4 

addp,  I, t) 
-D 4 

t 0. [ (? (?, t )  t 2 (d ))n(d , ;, t)] ta [I (dp, r, t)n(dp, r, t) 3 
adP a t  S P  P 

= V. D(d )Vn(d 4 r, t) t p(dp: Z,;, t)n(d ’ 4 r, t ) n ( z  -D r, ‘t)dd ’ - (1) 
d 

P P’ 0 P P’ P’ P 

4 

n(dp, r, t) is the size distribution function and i s  defined such that dN, the 
number of particles per unit volume with sizes in the range d to d 
is given by: 

P P + d d p  

4 4 

dN(d r, t )  = n(dp, r, t)dd 
PI P 

4 

where dp is particle diameter, r is the position vzctor and t i s  the time. 
v(r, t )  is the velocity offhe suspending fluid and vs(d ) is the particle 
settling velocity. I(dp, r ,  t) is the rate of change of barticle diameter by 
gas-to-particle conversion and growth of preexisting particles: 

- 4  

D(dp) is the particle diffusion coefficient. P(dg ,  dpj) i s  the coagulation 

n(dpj, r, t)dd add is the collision rate per unit volume of fluid between 
particles of seespd . to dpi t ddpi and dpj to d t ddpj. d i s  defined by 

constant for particles of sizes dpi and dpj 8 0  t ate (dpi, dpj)n(dpi, -8 r, t )  
4 - 

Pl pj P 
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d" = (dp 3 - d p )  3. 113 
P 

Eq. (1) results f rom an analysis of the rate of change of the number 
in an infinitesimal volume, of particles with sizes between dp and 

-particle conversion. Differences between the velocities of the fluid and 
the particles due to inertial effects have not been considered. 
t e r m  on the left side of Eq. (1) results from convection and settling. 
third te rm ar ises  from growth through gas-to-particle conversion. 
first t e r m  on the right side results f rom particle diffusion, and the second 
and third te rms  from coagulation. 
include homogeneous nucleation provided suitable constraints a r e  placed 
on 8, the collision frequency function. 
the boundary conditions for the equation, while the secondary sources a r e  
in the equation itself. 

t dd 
as a result of convection, diffusion, s e  > p  imentation, coagulation and gas-to 

The second 
The 

The 

The growth t e r m  can be interpreted to 

P r i m a r y  aerosol sources appear in 

If the motion of the suspending fluid i s  turbulent, short time fluctu- 
ations F u s t  be taken into account. 
where v, n and I a r e  assumed to  be sums of slowly and rapidly varying 
te rms  such that the averages of the rapidly varying terms vanish over 
short times 

The Reynolds hypothesis can be applied 

- -. + +, 
v = v t v  

n = n t n '  
- 
- 

I = I t I '  

Turbulent coagulation is neglected, and f l  i e  not considered to be a fluctu- 
ating variable. 
prime denote rapid fluctuations. The fluctuating term in I is  due to vari- 
ations in gas phase concentrations. 
the equation averaged over short  times to give: 

The over-lines represent short time averages and the 

Eq. ( 5 )  can be substituted into (1) and 

d d - n'(d ' ) n ' ( s  )dd ' 
P P  

t $jop p(dp', d-)ii(d ')n(; ) d d ' t $ J  'ad P ' , dP) 
P P P  p p  0 
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m I 

d ')n'(d )n'(d ')dd ' - Jo (dp, p p P P  

Various te rms  in Eq. (6) dominate in different particle size ranges. 
Convection and eddy diffusion a r e  independent of particle size in the absence 
of inertial effects. 
(dp > 1Um). Gas to particle conversion causes an increaee in particle 
size and, for certain forms of I, leads to accumulation of particles in 
certain size ranges. 
(d c 0. l p ) .  Brownian coagulation causes a drop in the number of very 
s&ll particles and transfers them to larger sizes. However, the effect 
on these l a rge r  sizes is generally small since only a small amount of 
material is transferred. 
Coagulation by differential sedimentation is important for coagulation 
between large particles of differing sizes and can, under certain circum- 
stances, sweep large numbers of smaller particles f rom the atmos- 
phere. 

Sedimentation is significant only fo r  large particles 

Brownian diffusion affects very small  particles 

Coagulation by laminar shear can affect all sizes. 

Visibility reduction by smog aerosols results primarily f rom light 
scattering by particles with diameters between 0.1 and 1. OMm (2). 
aerosols a s  they a r e  emitted cannot account for the observed visibility 
reduction (1). 
of secondary conversion processes account for a major portion of the 
aerosol on days of poor visibility (1, 4). 
of Husar, et al. (3) who have shown that gas-to-particle conversion can 
account for the accumulation in the 0.1 to 1. O p  size range. Hence par- 
ticle growth plays a key role in the dynamics of the urban aerosol; the 
purpose of this study was to evaluate growth mechanisms experimentally 
and theoretically. 

Pr imary 

Analysis of chemical composition shows that the products 

This is consistent with the results 

GROWTH LAWS 

The form of the growth law depends on the mechanism which controls 
If diffusion of gas phase the rate of transfer to  the individual particles (4). 

material to the particles controls, the growth law i e  given by Fuchs and 
Sutugin ( 5 )  based on the work of S h n i  (6): 

d 
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where v is the particle volume, t i s  time, Di the diffusion coefficient of the 
ith species, pi and pio its partial pressure far from andnear the particle, 
p i  its particulate phase density and R is the gas 
law constant, T the absolute temperature, and 
air. The factor 4, is  given by: 

its molecular weight. 
the mean free path in 

1.333 t 0.71 Kn" 
4 , =  

1 t Kn-l 

where Kn = 2k/d i s  the Knudsen number. Equation (7) assumes that 
(1) the diffusion is a quasi-stationary process, so that the flux of material 
to the particle can be considered constant with time, (2) the concentration 
of diffusing molecules in the gas phase is small enough that collisions 
between diffusing molecules can be neglected and (3) the masses of the 
diffusing molecules a re  much less than those of the bulk phase (air) so 
that diffusing molecules assume the velocity distribution of the bulk phase 
molecules following collisions. 
valid in urban smog while the last is not. However, the problem for which 
the last assumption does not hold has not been solved. 

P 

The first  two assumptions a re  probably 

When the diffusing species is  adsorbed or absorbed by the particles, 
pio vanishes. When droplet curvature and solution composition have a 
significant effect on vapor pressure, the Gibbs-Duhem equation can be 
used to calculate the equilibrium partial pressure of the ifh species over 
the solution droplet: 

Pio = pvi yixi exp(%Mi/piRTd P 1 ( 9 )  

where pvi is  the vapor pressure of the species, x. its particulate mole 
fraction, 0 the surface tension of the particle and yi is the activity coef- 
ficient of the species 'in the particle defined such that Y i  approaches one as 
xi approaches one. The growth 
rate is then given by: 

It is assumed that the gas phase is ideal. 

where Si = p i / p ~  is the saturation ratio for the ith species. If al l  the 
saturation ratios a re  near one and yixi is independent of particle size, the 
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i 

exponentials can be expanded and only the linear t e r m s  retained to give: 

where 

and 

Equation (5) can be written as: 

where 

and 

d 
P 

A = ) , A i  

i 

L A.d*. 
i 1 P 1  

d =  

L A i  i 

* 
d is the critical size below which growth does not occur. 

P 
If the rate  of particle growth is limited by a chemical reaction which 

occurs on the surface of the particle, the growth law ia:  
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where the factor Kl ( t )  is equal to the rate of production of particulate ma- 
ter ia l  per unit surface a rea  and is assumed to be independent of size. 

If reactions occurring within the particle control the growth, the 
rate is: 

where K2(t)  is the rate  of production of particulate material per unit 
particle volume and, like K 

EXPERIMENTAL PROCEDURE 

is assumed to be independent of size. 1' 

Experiments a r e  being conducted to measure the growth rate a s  a 
function of particle size using a 60m3 bas constructed of  1 mil TeflonR 
sheets as a reaction vessel. 
seams reenforced with mylar tape. TeflonR was chosen because of its 
transparency to ultra-violet radiation and its inert  chemical nature; ozone 
losses to the walls a r e  small. 
the Keck Laboratory using natural solar radiation. 

The sheets a r e  heat sealed together and the 

Experiments a r e  conducted on the roof of 

In a typical experiment, atmospheric a i r  with its ambient aerosol 
burden is introduced into the bag, and an organic vapor, NO, and NO2 a r e  
added. In some cases, SO is  also added. Precautions a r e  taken to assure  
adequate mixing of the add8ives with the air .  The quantity of NO added 
is sufficient to reduce the initial ozone concentration to zero. 
flushed with ambient a i r  a minimum of three times before the introduction 
of the additives in order to  remove residual products from previous ex- 
periments. Particle size distributions a r e  measured as a function of t ime 
in the size range above 0.30pm particle diameter with a modified Climet . 
Instruments Model CI-201 optical particle counter in conjunction with a 
multichannel analyzer, Concentrations of NO, NO2, SO2 and ozone a r e  
also monitored as  well a s  total aerosol number concentration, light scat- 
tering and solar radiation. 
over a 100 to 150 sec time period. 
between measurements for output of the data to a Teletype. 

The bag is 

The size distribution measurements a r e  made 
An additional 100 sec. is required 

The Mie theory of light scattering in conjunction with monodisperse 
polystyrene latex spheres has been used to determine theoretical calibra- 
tions for the optical counter system for various particle refractive indices. 
The particles in the bag h a v e  been assumed to be spherical with an index 
of refraction of 1.5 (2). 

, 
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To calculate particle growl.. ra tes ,  the following assumptions are  
made: 
measured by the optical particle counter (d > 0.3km),  ( 2 )  all par t ic les  
of a given s i ze  grow at the same ra te  and (f) the growth rate  is a mono- 
tonic function of size. Calculations of coagulation ra tes  based on Brownian 
diffusion and measured total number concentrations support the first assump-  
tion, and the experimental resul ts  a r e  consistent with the second and third. 
Then, a s  a given s ize  particle grows, the number concentration of l a rge r  
par t ic les  will remain the same. 

(1) coagulation does not affect the number o r  s ize  of par t ic les  

Let NGT(d,, t )  be the number concen- 
t ra t ion of par t ic les  with diameters  grea te r  &an o r  equal to d 
of s ize  d at t grows to d a t  t * 

If a particle 
P' 

PO 0 pl  1 '  

Hence, measurements  of NGT at two different t imes can be used to calcu- 
late values of d 
f u x t i o n  of s ize  a r e  then approximated by: 

for  various values of dpo. Par t ic le  growth r a t e s  a s  a 
Pl 

'I, 3 3 - -  dv - -  
dt 6At (dpl - dpo)  

where A t  i s  the time between measurements .  
is assumed to be for  the mean s ize  d 

The value of the growth rate 

P: 

d = (dpl t dpo)/Z 
P 

Three  experiments have been conducted. In each, 1 ppm of 1 ,7-octa-  
diene, 0.33 ppm of NO and 0.33 ppm of NO2 were  added. In one, F91, 0.05 
ppm of SO2 were  a l so  added. The t imes,  initial and final total number con- 
centrations, light scattering coefficient (bscat) and maximum ozone concen- 
t ra t ions a r e  listed in Table I. 
bscat. 

Local visibility is inversely proportional to  
Figure 1 shows NGT vs.d for  various times in experiment F05. 

Schuetzle, e t  al. (7)  have identified difunctional organic compounds, 

P 

such a s  adipic acid in smog aerosol .  
chemical oxidation of diolefins or cyclic olefins. 
representative of such ae roso l  precursors .  

Such compounds r e s u l t  f r o m  the photo- 
Octadiene was chosen as 

If the growth is descr ibed by ei ther  Equation (7)  o r  by (14), both 
of which result f r o m  diffusion, dv/dt  (1 + kKn) should be a l inear  func- 
tion of particle size. Values of dv/dt  (1 + tKn)  f r o m  experiment F 0 4  
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a r e  shown in Figures 2-6. 
best f i t  straight lines to the data. 
positive intercepts on the particle size axis. 
that this intercept should be zero and Eq. (14) predicts a positive value, 
the results indicate that Eq. (14) can be used to describe the growth and 
that the growth is  therefore due to condensation on the particles and that the 
variation of vapor above the droplet with radius must be taken into account. 

The lines in the figures a r e  least-squares 
The fits a r e  seen to be good with 

Since Eq. (7) predicts 

-5 -4 2 The best-fit values of A varied from 3.89 x 10 to 1. 03 x 10 v m  / 
sec in experiment F 0 4  with an average of 7 . 0 5 ~  1 0 - 5 ~ m 2 / s e c  and a stan- 
dard deviation of 1.97 x 
0.274um with an average of 0 .268~"  and a standard deviation of 0.005~pn. 
For experiment F05,  the values of A varied from 4.83 x 
x 10-4km2/sec with an  average of 8.25 x and a standard deviation of 
3.31 x dp varied from 0.270 to 0.310km with an  average and stan- 
dard deviation of 0.285 and 0.011clm. For experiment F91, A varied from 
3.84 x to 1.44 x 10'$m2/sec with an average and standard deviation 
of 9.78 x d" varied from 0.257 to 0.423um 
with an average and standard deviation of 8.281 p m  and 0 . 0 5 6 ~ .  The 
uncertainties in the individual estimates of A and d: were on the order of 
5770 and 8%, respectively, for a l l  three experiments. 

The values of dp varied from 0.259 to 

to 1.48 

B 

and 2.95 x 10'5pm2/sec. 

A ser ies  of calculations have been carried out to see whether Eq. (14) 
can predict the changes in the measured size distributions. 
consisted of using a measured size distribution and applying the fitted 
growth laws over the intervening time period to a later measured distri- 
bution. The results of such calculations a r e  shown in Figures 7 and 8. 
Fig. 7 resulted from using the third measured distribution in experiment 
F 0 5  as a n  initial condition and applying the growth law over the 460 sec. to  
the fourth measured distribution. Figure 8 shows the results of using the 
first  measured distribution in F 0 5  as an initial condition and integrating 
over 2 7 1 9 sec. to the time of the las t  measured distribution. The func- 
tion plotted is dV/d log (d ) where V is total aerosol volume concentration 
and the logarithm is to bzse 10. The agreement is seen to be good in 
Fig. 7. Similar agreement between predicted and measured distributions 
were found for all other calculations between consecutively measured 
distributions. The agreement in Fig. 8 is not a s  good, small deviations 
having propogated over the long integration time involved. 

The calculations 

CONCLUSIONS 

Three experiments have been conducted in which the growth of 
aerosols due to gas-to-particle conversion was studied. 
was naturally irradiated, ambient, unfiltered urban a i r  to which 1,7-  
octadiene, NO, NO2 and, in one case, S% were added. 
of the particles larger than 0.3bm diameter were measured a s  functions 

The system used 

The growth rates 
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of time and particle size. The observed variations of growth rate with 
particle s i ze  can be descr ibed by a growth law resulting f r o m  a multi- 
component supersaturated vapor phase, where the supersaturat ions are 
on the o rde r  of a few percent and the particulate chemical composition 
is fa i r ly  constant with size. The variation of the vapor p re s su re  of the 
condensing substances above the par t ic les  with radius  must  be taken into 
account. Cr i t ica l  diameters on the o rde r  of 0.28um were  found. 
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I I I I I I 

F04 
T O  P-4 

Fig. 2. P a r t i c l e  growth rates 
calculated from consecutive size 
d i s t r ibu t ions  in experiment W4. 
The values shown are dv/dt 
(1 + P K ~ )  . The l i n e a r  fern is 
predicted by equation (7) pre- 
d i c t ing  a zero dp intercept  and 
equation (14) predicting a p o d -  
t i v e  d intercept .  The e r ro r  bars 
r e f l e c t  the s t a t i a t i c a l  uncertain- 
ties due t o  counting i n  measuring 
the s ize  dis t r ibut ions.  The num- 
bers  in the upper lef t  corner are 
the pa i r s  of s i z e  distributioncl 
u8ed in  t he  calculattons.  
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211 TO 15 

Fig. 3. P a r t i c l e  growth rates 
calculated from conaecutivvc aizc  
d i s t r ibu t ions  in experiment F04, 
The values shown are dv/dt 
(1 + Ch). The linear foam is 
predicted by equation (7) pre- 
d i c t ing  a zero dp in te rcept  and 
equation (14) predicting a posi- 
t i v e  d in te rcept .  The e r r o r  bars  
reflec! t he  s t a t i a t i c a l  uncertain- 
ties due t o  counting in measuring 
the  s i z e  d i s t r ibu t ions .  The num- 
bers  i n  the  upper l e f t  corner are 
t h e  pairs of s i z e  d i s t r ibu t ions  T 
used’ in t he  calculations.  
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I I I I I I 

FOU 
25 TO 16 

- Fig. 4. P a r t i c l e  growth rates 
calculated from consecutive s i z e  
d i s t r ibu t ions  i n  experiment F04. 
The value0 shown are dvldt 
(1 + I f i ) .  The l inea r  form is 
predicted by equation (7) pre- 
dict ing a zero d 
equation (14) ptgdlcting a posi- 
t i v e  d Intercept.  The e r ro r  bars 
r e f l e c t  t he  statist ical  uncertain- 
ties due t o  counting i n  measuring 
the s i z e  dis t r ibut ions.  The num- 
b e r ~  i n  t h e  upper l e f t  corner are 
the pa i r s  of s i z e  d i s t r ibu t ions  
us& in t h e  calculatiana,  

intercept  and 
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F04 
16 T O  17 

Pig. 5 .  P a r t i c l e  growth r a t e s  
calculated from consecutive s i z e  
d i s t r ibu t ions  i n  experiment F04. 

(1 + 1h). The l inea r  form i r  
predicted by equation (7) pre- 
dict ing a zero dp intercept  and 
equation (14) predicting a poai- 
t i v e  dp intercept.  The e r ro r  bars  
r e f l e c t  t he  statistical uncertain- 
t i e a  due t o  counting i n  measuring 
the size diemibutlone. The num- 
bers i n  the  upper l e f t  comer are 
the  p a i r s  of s ize  d i s t r ibu t ions  

. The valuer shown are dv/dt 

I 

I 

/ 

- 
1 0.2 0.3 0.11 0.5 0.6 0.7 0.8 0.9 1.0 

Dp - MICRONS 



17 TO 18 

Fig. 6 .  P a r t i c l e  growth rates 
ca lcu la ted  from consecutive s i z e  
d i s t r i b u t i o n s  i n  experiment F04. 
The values shown are dv/dt 
( 1  + 1 ~ n )  . 
predicted by eqwt ion(7)  pre- 
d i e t ing  a zero dp in t e rcep t  and 
equation (14) pred ic t ing  a posi- 
t i v e  d in te rcept .  The e r r o r  bare 
r e f l ec?  t h e  statistical uncertain- 
ties due t o  counting i n  measuring 
the  s i z e  d i s t r ibu t ions .  The num- 
be r s  i n  the  upper l e f t  corner are 
the  p a i r s  of size d i s t r i b u t i o n s  
used i n  t h e  ca lcu la t ions .  

The l i n e a r  form is 
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3 TO 4 

Fig. 7. Application of t h e  bes t - f i t  
growth l a w  (Eq. 04)) t o  t he  time 
in t e rva l  between t h e  t h i r d  and four th  
volume d i s t r ibu t ions  i n  experiment F05. 
The time in t e rva l  between t h e  measure- 
ments was 460 sec. The lower curve is 
t h e  t h i r d  d i s t r ibu t ion .  
is t h e  s i z e  d i s t r ibu t ion  predicted by 
the  growth l a w  f o r  t h e  time of t he  
four th  measurement, 
four th  measured d i a t r ibu t i an ,  

The upper curve 

The pa in t s  are the 
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Fig. 8. Application of the best f i t  
growth laws (Eq. (14)) to the time 
interval between the f i r s t  and 
eleventh measured volume diatribu- 
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tions in experiment F05. 
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MICROSTRUCTURE, COMPOSITION AND DYNAMICAL 
EVOLUTION OF SCATTERING PARTICULATES 

DETERMINED FROM OPTICAL DATA 

Ala in  L. Fymat 
Jet  Propulsion Lab0 r at o ry, 

California Institute of Technology 
Pasadena, California 91103 

ABSTRACT 

A method is described for determining the 
microstructure and composition of scattering 
particulates from optical data. 
angular measurements of light scattered in a for- 
ward cone of approximate half-width 7.5O a r e  per- 
formed with a n  angular resolution of 15 min, o r  finer, 
at a near IR wavelength longer than approximately 
0.7 pm but not exceeding the expected minimum 
particle radius. Data obtained in this manner a r e  
used to  reconstruct the particle size distribution 
beyond 0.7 pm from a closed form, analytical 
inverse solution to  the angular diffraction integral 
generalized to a polydispersion. This solution is 
essentially independent of the refractive index, and 
is unconstrained relatively to any analytical distribu- 
tion model. It applies to any arbi t rary mixture of j 
different species of particles, each species eventually 
exhibiting a different refractive index, imbedded in  
i different species of gases. An effective gaseous 
depolarization factor can be determined separately 
from the measurement at a single near-forward 
scattering angle of the degree of polarization of the 
diffracted light. The effect of gases on light scat- 
tered by larger particles c a n  thus be effectively 
eliminated. 
ment are carr ied out at a eet of additional wavelengths 
substantially different f rom the first one. 
size distribution determined i n  the first step, the 
latter data a r e  employed to  retrieve the complex 
refractive index at these other wavelengths using a 
nonlinear minimization search routine we developed 
earlier.  The method can be implemented for real-  
t ime operation, thus also providing a means for 
monitoring the dynamical evolution of the particles. 

In a first  step, 

In  a second step, the identical measure- 

With the 

I. INTRODUCTION 

Clouds, radiation and dynamics form the closed system which 
Each of these three elements determines our weather and climate. 

is affected, either directly o r  indirectly, by the scattering 
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particulates present i n  the atmosphere i n  the form of aerosols 
(natural and anthropogenic), hydrosols (fog, sea sprays) and larger  
particles (water drops and ice crystals). The effect of these partic- 
ulates depends on their  physical characteristics (geometrical shape, 
size and distribution, complex refractive index), and on their ' 

residence t ime in the atmosphere. 
attached to the determination of these characteristics and this resi-  
dence time. 
has added tremendously to this interest. Several experimental and 
theoretical techniques dealing with this problem a r e  therefore being 
revived, improved or  newly developed. These techniques transcend 
the field of meteorology and may be of direct applicability in other 
fields of science and engineering. 

Great interest is therefore 

Current concern about the quality of our environment 

Conventional experimental techniques a r e  based on in situ 
sampling during which the particles a r e  thermally precipitated, 
impacted o r  otherwise mechanically collected. Analysis of their  
sizes is effected in the bulk range (0.01 - 1,000 pm) covering aero- 
sols, non-precipitating clouds and some rain drops. 
however, several  problems a r e  associated with these techniques. 
While it is not our purpose to  discuss here these problems, let us at 
least  indicate that, because the medium is disturbed by the sampling 
process, it is generally thought that the sample so obtained is not 
representative. Imaging techniques a re  also being developed, How- 
ever, because the measurements a re  still performed within the 
medium, it is difficult to assess  whether the problem just indicated 
has been overcome and to what extent. Remote sensing techniques, 
on the other hand, can by definition overcome this fundamental prob- 
lem. They are, however, encumbered with analytical and numerical 
difficulties. These are discussed systematically elsewhere [ 11. In 
the latter techniques, the main efforts have concentrated on only the 
determination of the size distribution of spherical particles of known' 
composition. 
recently developed for retrieving the size distribution as well as the 
refractive index and its spectrum. This method involves a two-step 
process. The first step provides the size distribution independently 
of the refractive index, a feature of particular interest i n  the study 
of drops and bubbles. 
the process then yields the refractive index spectrum. 

LI. SOME BACKGROUND REMARKS 

As is well known, 

In this paper, we wish to present a method we have 

Using this knowledge, the second step of 

Consider a n  arbi t rary mixture of gases and particulates, either 
contained i n  a laboratory cell o r  freely suspended i n  air o r  in weight- 
lessness. 
light or  artificial light source) of known brightness and state of polar- 
ization. 
scattered by both gases and particles in the medium. 
emerging after interaction can be conveniently separated, both 
analytically and experimentally, into a direct and a diffuse compo- 
nent, 
that has been reduced by absorption and first-order scattering 

This medium is illuminated by shortwave radiation (solar 

On interaction, this incident light is partly absorbed and 
The radiation 

The former component is that part  of the incident radiation 
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processes,  
same state of polarization as the incoming light. The latter compo- 
nent, the remaining fraction of the incident light, has suffered the 
same two processes of absorption and scattering but has, in  counter- 
part, been augmented by second- and higher-order scattering (i. e., 
virtual medium emission) into any viewing direction of interest, It 
propagates in all directions between and including the exact forward 
and the exact backward directions. With the exception of the exact 
forward direction, it is generally in a different state of polarization 
than the light source. I t s  intensity in this forward direction is negli- 
gible compared to that of the direct beam but, nevertheless, amounts 
to half the total scattered light, the remaining half being distributed 
among all other directions. 

It propagates i n  the exact forward direction and is in the 

Both the direct and the diffuse light beams contain information 
about the absorbing and scattering medium. While it is difficult to 
quantify the relative information content of these two beams, it is 
immediately clear that the diffuse beam affords many more poasi- 
bilities for retrieving this information than the direct beam. To be 
sure,  the diffuse beam will be described by four observables, 
so called Stokes's parameters (I, Q, U, V) which give, respectively, 
the light intensity, i ts  degree of polarization, the orientation of its 
plane of polarization, and the ellipticity of i ts  polarization ellipse. 
Each observable exhibits variations with both angle and frequency. 
On the other hand, the direct beam, characterized only by its inten- 
sity, presents solely frequency variations. This statement, however, 
should not be construed to  imply that the direct beam is i n  any way 
of l e s se r  importance, o r  contains less information than the diffuse 
beam. Only a detailed and systematic investigation of both situa- 
tions will provide a reasonable conclusion as to their  relative merits 
and disadvantages. A concerted use of both beams, when experi- 
mentally feasible, may indeed provide a powerful approach since 
the two determinations of particle parameters resulting from use of 
the two beams must necessarily be consistent. 

The basic problem, i n  any event, is the following: given, with 
all required details, the lights incident on, and emerging from, the 
medium under consideration, determine the medium composition 
and microstructure. More specifically, determine for each g a s  
present i ts  absorption c ros s -  section, refractive index, anisotropy 
parameter (for nonspherical atoms and molecules), and number 
density. 
the latter three parameters by the well-known Rayleigh-Cabannes 
formula [ 21).  
number density, size distribution, and refractive index (both real  and 
imaginary parts) .  
n e s s  and, if  the medium is bounded by a reflecting surface, such as 
for the E a r t h ' s  atmosphere, also determine the surface character-  
istics. Excluding for the moment the 
surface reflection, the number of unknowns is 5 (N t M) t 1 in  the 
case of N gases and M pafticulates, assuming that each particulate 
type can be described by a single characteristic dimension. 
detailed size distribution must be determined, this number becomes 

(The scattering cross-section is expressed i n  t e r m s  of 

Likewise, for each particulate, determine i ts  shape, 

Lastly, determine the medium total optical thick- 

This is a formidable task! 

If the 
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5N t (4 t P) M t 1, where P is the number of parameters describing 
adequately the distribution. 
not, in many cases,  provide adequate representations, let us at least 
mention that for the most widely used distributions i n  meteorology, 
P = 1 (power, exponential and lognormal distributions) o r  P = 2 
(modified gamma distribution). The spatial variations of these 
unknowns must also be determined. 
considering only variations i n  the vertical, has been provided i n  
our ear l ier  work [ 11 for the direct beam, and the diffuse beam either 
reflected by, o r  transmitted through, the medium after a n  arbi t rary 
number of scattering events. If the surface, composed of Q different 
materials, is assimilated to  a n  optically infinite atmosphere, the 
above cited numbers of unknowns become 5 ( N  t M t Q) t 1 and 
5 N  t (4 t P ) ( M  t Q) t 1, respectively. 
obtained to this general problem. 
field a r e  concentrating their efforts on specialized cases i n  the hope 
that the experience and understanding thus acquired will lend a helpful 
hand for tackling the realistic problem. It is clear from the s tar t  that 
reductions in the problem dimensionality, when justified by either a 
theoretical analysis or  the experimental conditions will be cri t ical  
t o  the success of the enterprise. 
exhibiting spatial variations can be mimicked by an equivalent 
homogeneous medium with no such variations, that is i f  two such 
media can be found that result i n  the same emergent radiation field, 
then, obviously, the t rue physical parameters of the particles cannot 
be determined. Instead, lleffectivet' parameters will be obtained which 
may depart from the t rue ones. Such effective parameters may never- 
theless be useful for a study, not of the properties, but of the effects 
of the particulates on radiation field observables. We have provided 
[ 11 a critical, although not exhaustive, analysis of the various methods 
thus developed. In this paper, we will limit ourselves to that method 
developed by the author that seems more appropriate t o  the purposes 
of the present volume. 
publications [ 1, 3, 41. 

III. STATEMENT O F  PROBLEM 

Although analytical distributions may 

The corresponding formulation, 

No solution has yet been 
In  the meantime, workers in the 

If the actual inhomogeneous medium 

Additional material can be found in our ear l ier  

The following problem will be considered: unpolarized light of 
wavelength, X, forming a parallel beam of intensity, IO, is incident 
along the direction 80 = cosq1 po on a plane-parallel stratified medium 
consisting of a n  arbi t rary mixture of i different species of gases and 
j different species of particulates. The direction of incidence is 
referred to the normal to the plane of stratification of the medium, 
and the particles, which may present a distribution in their refractive 
indices, a r e  assumed to be homogeneous, spherical, and their  sizes 
described by some arbi t rary distribution, n(r) ,  where r is the particle 
radius. 
particular analytical model and may describe a monodispersion o r  any 
arbitrary polydispersion having one o r  several  modes. 

It must be noted that this distribution is not restricted to any 

The total optical thickness, TI, of the medium at wavelength X 
will be assumed to be small, TI <(: 1, so that only single scattering 
need be studied. No reflecting boundary will be considered. 



576 

I 

! 

The diffuse light transmitted along the direction 8 = cos-’ p , 
referred as ear l ier  to the normal to the plane of stratification, is 
polarized with components I Il and Q 12, only. They are [ 11: 

where 

z 
w is the single scattering albedo: 

and Pkl a r e  elements of the scattering phase-matrix: 

In deriving Eq. (1) it was assumed that the medium is optically 
homogeneous, i. e. , ;3 and 
reasonable assumption in view of the hypothesis 11 1. However, 
i f  the medium were inhomogeneous, then, 3 and P would apply t o  
an equivalent homogeneous medium that yields the same transmitted 
light, as discussed earlier.  The quantity m(A) is the medium com- 
plex refractive index at wavelength A; u and a a r e  volume scattering 
and absorption coefficients, respectively, with subscripts g for gases 
and p for  particles; and c is a volume extinction coefficient. 
superscripts i and j denote, respectively, summations over all i 
species of gases and j species of particles, i. e., 

do not vary i n  the medium. This is a 

The 
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(Einstein' B convention). In Eq. (3) ,  uJ and uJ must be interpreted 
P a s  applying to  a polydispersion, i. e., P 

y f 1 y ( r )  n ( r )  d r ,  y uJ * j  
PI (5) 

where y ( r )  is for  a single par t ic le  radius. 
and ,P 
respectively. 
theory. 

Lastly, the matr ices  Fg 
are the Rayleigh-Cabannes [ 21 and the Mie [ 5 1  phase-matr ices ,  

F o r  any m(A) and n(r) ,  zp can be computed f rom Miel s 

Inserting Eqs. (3),  (4) and (5) in Eq. ( l ) ,  the latter equation 
become s : 

Now, for  any a rb i t r a ry  8 ,  we have: 

(7) 
i sin&e (vi - 1 )  

F21,g = a 1 t 2yi 
s 

i 
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where y i  = pi/(2 - p i ) ,  p i  being the depolarization factor of the ith gas 
species (e.g., pn = 0 for isotropic molecules, pn = 0.031 for air), 
and 

where k = 2u/X is the wavenumber, and s k  j 7 Sk, j(O,A; r), k = 1.2, 
a r e  Mie functions for a single particle of the jth 
radius r. F o r  given h and r, the latter functions will depend only on 
the refractive index of the jth particle species. 
scattering ( 0  = O O ) ,  they reduce to  (Kirchkoff approximation to 
Fraunhoffer diffraction; see, for example, Ref. 5): 

species and of 

However, for forward 

where J 1  is Bessel function of the first  kind and order unity, 
tion (9) shows that sk, j is remarkably independent of the refractive 
index, i.e. 

Equa- 

Sk, = - Sk . 

It follows in  this case that Eqs. (8) reduce to 

= o .  FL,  p J 
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With this result, Eqs. (6) become: 

Under the present conditions of single scattering, we also have by 
expanding the exponential6 i n  Eq. (2);  

T1 E 
4p 4 COS e 9 

f = -  - li m 
Tl << 1 

and, when this last  result is substituted in Eqs. (12), we get the final 
expr es  sions : 

= - 1 lm r2 J!(x) n(r)  d r  , 
2 s i n  0 

and 

These two expressions provide the required formulation of the prob- 
lem of interest. 
generalized t o  the case of a polydispersion of scattering particles. 
Equation (15) can be used to infer information on gaseous depolariza- 
tion [ s e e  Eqs. (7 ) ] .  
two-step procedure: 

Equation (14) i s  the angular diffraction integral 

Our main problem will now lie i n  the following 
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i 1. Assuming F11 is known o r  can be determined separately, 
to invert Eq. (14) so as to  reconstruct the size distribu- 
tion n(r). 

Using step No. 1, t o  infer from Mie' s theory the only 
remaining unknown, namely the complex refractive index, 
and i ts  spectrum. 

2. 

The exact manner in which these two steps a r e  carried out 
explicitly is described i n  the following sections, 

'rV. DETERMINATION OF SIZE DISTRIBUTION 

Consider again Eq. (14). The left-hand side of this equation is 
a measured quantity which must be used to reconstruct the size dis- 
tribution n(r). 
measurements of light (radiance) scattered in near forward directions 
contained within a narrow cone whose half-width will later be pre-  
scribed. The quantity F l l  
o r  simultaneously measurabqe. F o r  example, i f  y is a n  "effectivell 
parametef d e z c r i b i g  the combined effect of all gaseous species 
present, y = p/(2 - p),  where p is a n  effective depolarization factor 
for  the assembly of gases, o r  i n  the simple case of i = 1 (single g a s  
species), then, Eqs. ( 7 )  become: 

The ratio (Ii/Io) is directly provided by angular 

is assumed to be eit_her known a pr ior i  

where i?k1 a r e  effective values of Fk l  A simultaneous mea- 
surement dpthe degree of polarization ofgbrw_ardly scattered light i n  
any d i r e c t i o l e  ==Oo will provide the quantity F21,  that is y and, 
hence, also F1l, g,  With the above expressions, %e quantity Z1 
become s : 

which is obtained immediately for any given cone angle 0 ,  measured 
values of (I1/Io) and (I 2 0  /I ), and depolarization f ac to ry .  
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It has been shown 61  that Eq. (14) with Jv substituted in place 
of J 1  and v = 1/2, 1, 3 / 2 applies t o  a whole c lass  of scattering 
particles: Rayleigh-Cans par t ic les ,  Fraunhoffer particles, and 
those par t ic les  covering the intermediate cases  between Rayleigh- 
Cans and anomalous diffraction [see Ref. 5 for a description of these 
various par t ic les] .  With this substitution i n  mind, the following will 
cover a l l  these  cases .  Using the Bateman-Titchmarsh formula 
[ 7,8] ,  Eq. (14) can be inverted analytically [ 3,4,6]  to  yield the 
closed fo rm solution: 

where Y1 is a Bessel  function of the second kind of order  unity. 
the c l a s s  above listed of par t ic les ,  Yv should be substituted in  place 
of this  las t  function. 
makes no assumption regarding the form of n(r) ;  i n  par t icular ,  it does 
not assume,  as is generally done, that n ( r )  follows any of the analyti- 
ca l  distributions derived empir ical ly  in the l i terature .  Thus, it is 
emphasized, n( r )  is unbiased and can be any distribution: isolated 
spike (monodispersion), unimodal, polymodal. F o r  the rest r ic ted 
case  of a single species  of par t ic les  and no gases  present ,  the co r re -  
sponding resul t  t o  Eq. (18) is quoted in the Russian l i terature  [see, 
e. g., Ref. 91, but no explicit demonstration of it could be found. 

F r o m  Ti tchmarsh ' s  conditions [8] ,  it follows that Eq. (18) is 
valid for  v 2 0 if k2r2n(r )  is integrable over  (0,m). This will always 
be t rue  since physical distributions always decay, and vanish beyond 
a cer ta in  maximal radius value. [The  validity for  - 1/2 < v C 0 
requires  that (kr)2vt2 n ( r )  be integrable over (0, a), 6 c a. 
v = f 1/2, Equation (18) reduces to  Four ie r  's sine formula. ] 
solution n( r )  given is exactly t rue  for  the function Z 1 defined by 
Eq. (14). In reality, however, 0 must remain contained within a 
narrow cone of angles; in any event, it cannot exceed 180O. Hence, 
it cannot become unbounded as implied by the above solution, and 
it therefore  becomes conceivable that the distribution n ( r )  may not 
be  reproduced exactly or ,  in  some extreme cases ,  not at all. 

ments aimed at assessing the effects of this  limitation, and at delimit- 
ing the domain of applicability of t h e  solution. 
study have been discussed elsewhere [ 31. 
present  some additional new resul ts  which should prove to  be helpful 
i n  the system design of a part ic le  s ize  spectrometer  based on the 
method. 

F o r  

It must be noted that the result in Eq. (18) 

F o r  
The 

We have performed a considerable amount of numerical experi-  

Some resul ts  of the 
Here, we should like to  
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The ftmeasurementst8, 2 1(8 , A), were generated i n  the computer 
from Eq. (14) using a number of different forms of n ( r ) :  monodis- 
persions, and polymodal distributions constructed from a. linear com- 
bination of a number of expressions like the modified gamma distrib- 
ution [ 101 : 

i 

! 

! 

n(r)  = a rQ e -brY 
# 

where 

N is the number density of particles, b is related to the mode radius 
(maximum concentration size), rc, of the distribution: 

and Q and y a r e  constants whose values, as well as those of N and b, 
depend on the type of cloud o r  haze studied. F o r  simplicity, we shall 
present here some of the results for a = b = y = 1 and various Q and X 
values. 
studied, 

Typical CPU times were approximately 5 sec per case 

A. Effect of Operating Wavelength 

The effect of the initial wavelength A = X I  selected for this f i r s t  
part  of the method is illustrated i n  Fig. 1 which shows a true plot of 
particle size distribution, labeled !In( TRUE)", for comparison with 
distribution curves determined with a wavelength of 0.05 pm, 0. 1 pm 
and 1.0 pm. 
respectively to the solid-line and dashed-line curves. Clearly, the 
curves for X = 0.05 pm and X = 0.1 pm are absurd and must be dis- 
carded for the present case where the minimum radius is ro = l pm. 
On the other hand, the curve for X = 1 pm is excellent i n  locating 
accurately the position of the mode radius and i n  reconstructing the 
e n t i r e  distribution except i n  the region between 1 and 2 pm where a 
small  negative tail  has developed. This tail, which is related to an 
im  roper selection of the smallest opening of the forward light cone 
[ 9p,  can be ttregularizedtt for all practical purposes. The result of 
this regularization for the case under study is illustrated by the dotted 
curve. We have determined that X i  and ro a r e  intimately connected 
by the relation: 

The ordinate scales on the left and on the right apply 
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In other words, we must operate with near IR wavelengths which must 
be approximately equal to o r  smaller than, the expected minimum 
radius. 
sizes smaller than approximately 0.7 pm. 

Alternatively, the method will not be able to sample particle 

I I I I I I I I I I 
- A  = 0.005 urn 

A =  I . O p r n  

,-- n (TRUE) ro= 1 prn 

25eS45Omin 
OA= 2 min. 

0 I I I I 
I5 17 19 21 

PARTICLE RADIUS, dum) 

TAILOF A = 1 ~rnREGULARlZED 

Fig. 1. Effect of Operating Wavelength 

B. Effect of Angular Range 

This effect is illustrated i n  Fig. 2 which shows a set of curves 
reconstructed from data obtained within the angular ranges of 100 min, 
200 min, 300 min, 450 min, 500 min and 750 min. 
100 min is clearly absurd. 
although the mode radius is located approximately correctly (its mag- 
nitude however is substantially underestimated by approximately 25%), 
and the sizes beyond 9 pm a r e  sampled correctly. The range of 300 
min is close to  being acceptable, and may be for some applications, 
particularly i f  the tail  at the smallest sizes is regularized. 
of 500 min, the result coincides with the t rue curve except i n  the 
region where n(r)  C 0.5 which is the only region where the curve 
labeled liem, = 500 mini' departs f rom the true curve, and even then 
only slightly, 

The curve for 
The range of 200 min is not much better 

At a range 

The results for emax = 450 min would be even better 
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than those at 500 min. Further departures from this optimum result 
in progressive degradation as shown by the curve at 750 min. 
that the range is here indicated by a positive maximum angle, emax. 
In practice, one would want to scan between + emax and - emax in 
order to detect inhomogeneities in the scattering medium. 

Note 

I I I I I I I I I 

ro= 3pm 

A8 - 2 min. 

A -  l p m  

8, - 300, 450, wx) min. 

Fig. 2. Effect of Angular Range 

C .  E f k c t  of Angular Resolution 

It is illustrated i n  Fig. 3 for various values of the angular 
resolution: A0 = 10 min, 15 min. 25 min, 30 min. 45 min and 75 
min. A t  all these resolutions, the mode radius is always accurately 
located. The curve for 75 min is clearly uneatisfactory, while for 
progressively finer resolutions the corresponding curves a r e  con- 
stantly improved. 
the uni,queness of the solution. 
there  is uniform convergence to the t rue curve, and the solution is 
unique and identical to the t rue one only if  the resolution is very 
small. Theoretically, A0 should be infinitesimally small. In practice, 
however, because of inherent noise i n  both experimental data and 
computations it is only necessary that A0 be approximately less 
than 15 min. 
A0 I s .  

This graph illustrates an important point regarding 
It is seen that as  A0 becomes smaller,  

Little improvement would be achieved by using smaller 
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51 I I I I I I I 1 I 1 

Fig. 3. Effect of Angular Resolution 

V. DETERMINATION OF COMPLEX REFRACTIVE 
INDEX SPECTRUM 

The second par t  of the method will now be described. The 
selection of the first wavelength A 1  according t o  Eq. ( 2 0 )  has enabled 
us  to  work within the Fraunhoffer approximation to scattering theory 
and to  re t r ieve  the par t ic le  s ize  distribution, independent of the 
refractive index, through a closed form analytical solution of the 
angular diffraction integral  for  a scattering polydispersion. On 
selecting a second wavelength A 2  departing substantially f rom A i ,  
(this is c lear ly  required in o rde r  that the data obtained separately 
with these two wavelengths be independent), the  above approximation 
can no longer be used, 
general  Miel s theory. 
the s ize  distribution determined f rom A 1  (which is evidently 
wavelength-independent) can be substituted in  Miel s solution leaving 
only m(k = A z ) ,  the  complex refractive index at  the second wavelength, 
a s  the only remaining unknown. 
will now be discussed. 

Instead, one is forced to  r e so r t  t o  the more  
This  is a ra ther  interesting situation for, then, 

The way in  which r n ( A 2 )  is retr ieved 

Let Ii E I (ei; mr,  mi)  denote the forwardly scat tered intensities 
The forward computed f rom Mie’ s solution at A 2  with the known n(r). 



586 

angle 8, taking the values 0 i, is the independent variable. 
dependent variables a r e  m r  and "j, that is respectively the real  and 
imaginary parts of the refractive index. The dependence of mr and 
mi on A2 is implicit. The measurements obtained by repeating with 
the second wavelength A 2  the procedure described in  the previous 
section, according to the presczibei optimal angular range and resolu- 
tion, will similarly be denoted Ii 
be to solve the equation 

The 

I(ei; mr, mi). The purpose would 

where f i  is an upper bound for the accuracy with which we require the 
computations Ii to approximate the measurements q; t .  is fixed in 
particular f rom values of the noise i n  both the data and the computa- 
tions since the evaluation of Ii will involve the use of f ini te  word 
length arithmetic and quadrature rules of finite accuracy. 
define the function (independent of 0) 

We then 

where di is a statistical factor related to the distributions of the 
measurements within the observed angular interval, and to their  
relative weights. 
problem, i. e., a set  of 
m r  and mi, would have been obtained, i f  the weighted sum of squares 
of relative deviations appearing on the right-hand side of Eq. (22) is 
a minimum, say 

W e  say that an "inverse solutionlt of the original 
values of the unknown parameters,  

The function S can be considered a s  the equation of a curved surface, 
the minimum of which (if it exists) it is required to find. If the 
problem is well-conditioned and possesses a unique solution, then, 
the surface S will be smooth and will exhibit a unique minimum. 
pair  of values of m r  and 9 corresponding to this minimum, or i n  
other words the coordinates of the minimum i n  the parameter space 
of dimensions mr and mi, represents "the solutiontl. 

tion Search Method) for accomplishing such minimizations [ 11, 121. 
The algorithm is able to find the minimum of any arbi t rary function, 
not necessarily S-functions like in Eq. ( 2 2 ) .  

The 

We have developed a nonlinear search routine (called Minimiza- 

It can handle any 
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I 
Real Pa r t ,  mr Imaginary part, mi 

T r u e  Computed True  Computed 

a rb i t r a ry  number of unknowns, and is independent of the physical o r  
mathematical assumptions made in evaluating the quantities Ii. 
plete details as well as flow char t s  can be found in  our  earlier pub- 
lished work. 

Com- 

Sample resul ts  for  a water  (fair weather cumulus) cloud and a 
sulphuric acid cloud are i l lustrated in  Table 1. 
s ize  distributibns for  these two cases a r e  respectively: (i) Q = 6, 
y = 1, b = 1.5; and (ii) Q = 9.5, y = 1.0, b = 12.5. 

The parameters  of the 

Maximal 
CPU 
Time 

Table 1. Illustrating applications of the Minimization 
Search Method in retrieving complex refractive 
index values of clouds. 

H2SO4 cloud 68 sec 

The total CPU t imes  vary  with the type of cloud considered and with 
the  initial guess  used for initiating the search  algorithm. 
present  cases, the i r  maximal values are indicated in  the Table. 

F o r  the 

The same  procedure can of course be applied t o  a set of second 
wavelengths. 
could be obtained. 

In this  manner  the  spectrum of the refractive index 

VI. DISCUSSION AND CONCLUSIONS 

W e  have descr ibed a two-step approach for  retrieving s imul-  
taneously and separately the s ize  distribution, and the complex refrac- 
tive index and its spectrum of atmospheric particulates f r o m  angular 
measurements  of light they scatter in  a narrow forward cone. In the 
f i r s t  step, the problem of determining the s ize  distribution only was 
considered within the framework of Fraunhoffer diffraction theory. 
The same t reatment  holds however in the Rayleigh-Gans approxima- 
tion a s  well as in  all intermediary cases between this  approximation 
and anomalous diffraction. In the Fraunhoffer case, we have limited 
our study t o  homogeneous spheres .  
this  case  f rom that of homogeneous ellipsoids since the corresponding 
diffraction pat terns  differ only by a constant factor [ 131. 
par t ic les  can however be distinguished f rom i ce  needles. 

We a r e  not able t o  distinguish 

These 
The same  
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situation exists in the Rayleigh-Cans case, 
the forward scattering region is multiple: (i) independence from the 
particle refractive index (Babinet' s principle). 
particularly interesting situation where size distribution can be deter-  
mined without regard to  refractive index; (ii) availability of a high 
level of scattered energy, half of the total (Huygens' principle), which 
can be separated out from the much weaker energy reflected by, and 
refracted in,  the particles; (iii) independence from polarization which 
thus does not affect the diffracted field since the incident polarization 
state persists after diffraction. 
species, each species having eventually a different refractive index, 
but all species together following a certain size distribution, can be 
imbedded in  a host gaseous mixture consisting of i different species 
of gases. The optical thickness of this medium was assumed to be 
sufficiently small  i n  order that single scattering effects only be con- 
sidered. Fo r  coherent light, Zuev e t  a1 [ 141 have determined that 
this thickness can take values up to  approximately 25. F o r  incoherent 
light, van de Hulst [ 5 )  has stated that it should not exceed 0. 1; for 
larger  values up to 0.3 a correction may be needed for double scatter-  
ing while for still larger  values of the thickness the complete multiple 
scattering must be considered. This statement was taken too literally 
in the past. 
for a mixture of volcanic dust (thickness = 0.5) and gases (thickness 
= 0. 145) have shown that near the zenith (p = po = 0 .966) ,  the con- 
tribution of multiple scattering to the observed txansmitted light is 
less than approximately 5% for the scattering angles of interest  here 
(<- 8O)! A similar conclusion has been reached by Deepak [ 161 who 
has found that the double ,scattering correction is within 4% up to 
angles of 20'. 
Fesenkova [ 171 and de Bary [ 187 that multiple scattering is negligible 
at small  scattering angle under reasonably clear  sky conditions. 
Clearly, single scattering theory has its usefulness for determining 
particle size distribution. It can certainly be retained as the basis 
for  a particle size spectrometer either i n  the laboratory o r  in an 
airborne instrument, 
domain of applicability of such an instrument. 
is nevertheless being extended to include multiple scattering effects 
in order  to cover all possible cases. 

The interest  of working in 

This results i n  a 

Such particles, i n  a number j of 

However, detailed computations by Weinman et a1 [ 151 

These results su port ear l ier  conclusions of Piaskowska- 

The use of laser light considerably extends the 
The present approach 

The effect of the gases can be determined separately if the degree 
of polarization of the transmitted light at any single, near-forward 
scattering angle is also measured. 
be known. 

Otherwise, it must be assumed to 

The proposed method, then, consists i n  effecting an angular 
scan of the near-forward scattering region at a set of wavelengths. 
The scan must be performed with a resolution of approximately 
15 min, o r  less,  and the forward cone half-width must not exceed 
approximately 8 deg. 
by Eq. ( 2 0 ) .  
reconstruct the size distribution for radius values larger  than approxi- 
mately 0 . 7  pm from the closed form, analytical solution in Eq. (18). 

The first wavelength is accurately prescribed 
Data obtained with this wavelength can then be used to  
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This solution, it is emphasized, is not constrained by any analytical 
distribution model (as is usually done). 
parameters is performed. 
here, and i n  our ear l ier  work, of the working of this first step of the 
method, the uniqueness of the solution, and i ts  stability with regard 
to experimental and numerical noise. 

No fitting of distribution 
Ample illustrations have been provided 

The other wavelengths, which must be substantially different 
from the one used above for reasons of statistical independence of 
information content, are employed i n  the second step of the method. 
Here, Mie' s theory is used, and the effects on the corresponding 
solution by particle sizes smaller than approximately 0 .7  pm a r e  
implicitly considered to  be negligible. With the size distribution 
previously determined, this solution will only depend on the complex 
refractive index. 
using the nonlinear search routine we developed earlier.  
noted that his routine is independent of the assumption of single 
scattering and can be coupled with the multiple scattering solution 
with equal success. 

Accurate values of this quantity can be recovered 
It may be 

The CPU times quoted for determining both size distribution 
and refractive index spectrum a r e  considerably shorter than the 
time scales of the physical processes considered. 
approach can be implemented for real-time operation to  monitor the 
dynamical evolution of the particulates. The principle of the method 
proposed (called Angular Forward Scattering Method) has been 
retained for  the system design of a particle size spectrometer and 
refractometer [ 121, and is being implemented at the Jet  Propulsion 
Laboratory. 
reported elsewhere. 
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SURFACE INSTABILITY OF STATIONARY AIR BUBBLES* 

Carl J. Remenyip* 

I 

! 

ABsrRAm 

This study was prompted by obseTations that pulsations of stationary 
bubbles accumulating in the fuel lines of the Saturn missile resulted in 
intense structural oscillations. 

High speed motion pictures were taken of bubbles oscillating with fixed 
mean positions in vertically oscillated containers. 
the degree of instability of the bubble surface increases with the value of 
oa2/v, where w = angular frequency, a = a characteristic linear bubble dimen- 
sion, and v = kinematic viscosity. 

It was observed that 

EXPE3IME"AL AF'PARAnJS 

Experiments were performed on a magnetic Vibration Exciter, Model C25H 
of the MB Manufacturing Company (Fig. 1). 
scribed below, a transparent, cubical plastic container (Fig. 2) was munted 
on the vibration table. Its edges are 14 in., and the hole at the top is 12 
in. deep and 2 in. in diameter. The wall was constructed unusually thick to 
eliminate wall vibrations. When thinner walled containers were used, wall 
vibrations significantly affected the fluctuating pressure field in the liquid. 

large bubbles from disintegrating into clusters of small bubbles. 
bles were required for study of their surface motions using available equip- 
ment. 

HYCAM K20S4E high-speed camera. 
camera and a flood lamp. 
era lens, allowing the beam to pass throu 

producing an even photographic background. 

For the first five bubbles de- 

The liquid in the container was glycerol, whose high viscosity prevented 
Large bub- 

The photographs shown here are frames of motion pictures taken with a 
During filming, the container was between the 

The light beam was aligned with the axis of the cam- 
the container into the lens. A 

translucent plastic sheet placed before 8 e flood lanp dispersed its light, 

EXPERIMENTAL PFGCEIXTRES 

Before each experiment, the camera was focused on a selected point inside 
the liquid to which the bubble was later steered. 

* This project was supported in part by the Propulsion and Vehicle Engineer- 
ing Laboratory, George C. Marshall Space Flight Center, Huntsville, Ala., 
under Contract NAS 8-20152. 

** Department of Engineering Science and Mechanics, The University of Tennes- 
see, Knoxville, Tennessee 37916 
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After activating the vibration exciter, oscillation frequency was  s e t  
as desired. 
t o  the surface, the amplitude was  s e t  sufficiently high to  drive any size 
bubble to  the container bottom. 
injected with a hypodermic needle, and the amplitude readjusted unt i l  the 
bubble hovered within camera focus in  a stationary mean position. 

Wherever the bubbles were released inside the container, they drifted 
to  the w a l l .  The f inal  position was  very near the container wall, but f a r  
enough away t o  prevent contact. 
towards the w a l l  probably is that two effects are combined i n  the process. 
The presence of the wall generates a "mirror image" of the bubble, i.e., 
the flow f ie ld s e t  up by the wall is nearly the same as i f  there were a bub- 
ble on the opposite side of the plane of the w a l l ,  pulsating i n  phase; Bjerknes 
(1909) demonstrated that two submerged objects pulsating in  phase exhibit mu- 
tual attraction. 

To ensure that the subsequently injected bubble would not rise 

Subsequently, a measured volume of a i r  was  

The explanation for the tendency t o  move 

DESCRIPTION OF "E BUBBLES AND THEIR SURFACE MOTIONS 

Bubbles shown in  the i l lustrations were viewed by the camera fran sev- 
eral  directions. 
is defined as one i n  which the region of the container's inside wall nearest 
to  the bubble is behind the bubble as seen by the camera. 
view, the direction of sight is turned 90 degrees relative t o  the direction 
of the previous view, i n  such a way that the nearest point of the wall is to  
the right i n  the picture. A view from the opposite direction w i l l  be called 
a l e f t  side view, and the opposite of the frontal view, i.e., a view i n  which 
the bubble clings to  the w a l l  region nearest t o  the camera, w i l l  be a rear 
view. 

elapsed time between them i s  1/8 of the oscillation period. 

For the following discussions, a frontal view of the bubble 

In a right si& 

I 

I The motion picture frames shown i n  the sequences were selected so that 
I 

l 
Thus, the f i r s t  

and ninth pictures in  any sequence show the same notion phase. 
On one-half of the inside container surface, horizontal semi-circles were 

inscribed a t  1/4 in. vertical  intervals t o  serve as reference lines fixed i n  
the container. Locations of bubbles shown i n  the figures were on or near an 
imaginary l ine connecting the middle points of these semi-circles. Thus, seg- 
m n t s  of reference lines visible i n  the pictures were i n  the immediate vicinity 
of the bubbles. In most figures, cross hairs provide a reference system fixed 
i n  the camera lens. 

the container bottom; to t a l  depth of the glycerol column w a s  between 10 and 11 
in. 

These bubbles hovered at  fixed mean positions three t o  four inches above 

Same bubbles are surrounded by small specks. Most of these are approxi- 
mately neutrally buoyant, plast ic  f i l ings or ion exchange beads which were add- 
ed t o  the glycerol t o  trace steady streaming (Remenyik 1970). 
large bubbles which are distorted by large instabi l i t ies ,  part  of the specks 
are small bubblets which have been shed by the large bubble. 

by the parameter St f ua2/v, i n  which w represents the angular frequency, v the 
kinematic viscosity, and "a" a characteristic linear dimension associated with 
the top of the bubble's surface. 

Around those 

Observations indicate that instabi l i ty  of the bubble's surface is  controlled 

A radius of curvature of the bubble top is such 
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a linear dimension, but its determination is frequently difficult or even im- 
possible. 
height had about the same magnitude as the radii of curvature at the top, the 
height was used as characteristic length lla'l for such bubbles. 

The figures are arranged in order of increasing ua2/v, and thus of in- 
creasing bubble size. 

1. It oscillated with a fre- 
quency of 50 cps and maintained a nearly spherical shape throughout the oscil- 
lation cycle. Its periodic, asynanetric distortion was undoubtedly caused by 
strong shear stresses which resulted from the proximity of the wall. Its di- 
ameter was about 0.2 m., and d 2 / v  = 0.5, where R is half the diameter. The 
bubble is sham in a right side view. 

2.  The flattened bubble in Fig. 4 had a height of about 0.47 an., oscil- 
lated with a frequency of 54 cps, and a 2 / v  = 10. Its entire surface was 
smooth at all times during the oscillation cycle. The bubble is shown in fmn- 
tal view. 

Figure 5 shows a bubble of 1.46 an. approximate height, oscillating 
with 51 cps; ua2/v = 50. The intended view was frontal; however, the bubble 
drifted unexpectedly to the left, and the view became intermediate between 
frontal and left lateral. As a consequence, the curving wall optically dis- 
torted the left side of the bubble more than the right side, 
ground of the bubble was accidentally caused by the wrong material having been 
placed in front of the flood lamp to diffuse its light.* 

In a frame-by-frame examination of the film, shot at 6000 frames per 
second, the following observations WTI? made. At about the time when the bub- 
ble top is in its highest position, a short, thin, faint white line appears 
along the upper edge of the silhouette (+Fig. Sf). This line lengthens rapid- 
ly (Fig. 5g and h); when it reaches the edge of the silhouette at the point of 
interception a small break appears in the smooth line of the edge. 
runs downward along the edge of the silhouette as the white line curves down- 
ward and continues to lengthen and eventually disappears (+Fig. Si, a and b). 

A second, much wider and brighter streak begins to develop above the 
first one when the top assumes its lowest position and the bubble its smallest 
size (Fig. Sa and i). It seem to be a wave interrupting the bubble surface. 
It grows in width and depth while the top accelerates upward (Fig. Sb and c), 
and diminishes until it disappears when the top accelerates downward (Fig. 5d 
and e). One can conjecture that it is an instability feature that gravs out 
of a periodic initial deformation of the surface caused by the shear field of 
the wall. 
reappears after an interval of about 0.09 of the oscillation period, i.e., in 
about 0.0018 seconds. 
decreases and the maximwn amplitude of the wave increases with increasing 
ua2/v, and when this parameter surpasses a certain value, this feature no long- 
er disappears, but periodically varies in magnitude. Plotting locations of 
various points on the bubble against time indicates that the surface motion con- 
tains a significant second harmonic component. 

Since it was observed on several oblate bubbles that the bubble's 

The smallest bubble is shown in Fig, 3. 

3. 

The mottled back- 

This break 

Following its disappearance (between Fig. 5e and f), the faint line 

Scant available evidence indicates that this interval 

* In an effort to eliminate these shortcomings, the experiment was repeated; 
however, the new film was subsequently destroyed by yet another accident. 
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4. If ua2/v is increased, the wave-like surface distortion eventually 
becomes irregular. 
rear view. 

was about 1.6 an., and u 2 / v  = 75. 

bubble, appearing and disappearing with each cycle, and developing to vary- 
ing sizes, apparently randomly. 
large protrusion is always followed during the next cycle by one that is 
smaller than average. 
though it is not typical due to its large size, it was chosen for reproduction 
here because it exhibits exceptionally well certain details that are observable 
on nearly all protrusions. One such typical feature is the shape of the pro- 
trusion at the very beginning of its development. 
it is cylindrical and its tip terminates flat in a plane perpendicular to the 
cylinder axis (Fig. 6d). 

Large protrusions persist longer than smaller ones and, as a result, 
a small remnant of a large protrusion may still be present after the next pro- 
trusion had already appeared (Fig. 61 and m; the new protrusion is at right+). 
The bubble is surrounded by a cloud of small bubblets which had broken off from 
it, and these steadily stream as they oscillate and pulsate. Since the amount 
of light scattered by the bubblets varies with size, overall darkness of the 
photographs varies accordingly (Fig 6n). This offers a convenient method to 
determine the pulsation phase of the bubblets relative to that of the main bub- 
ble. 
in phase with the main bubble, at least in its neighborhood, extending to a 
distance of one or two bubble diameters. 
pulsate with a very large second harmonic component which in turn indicates 
that the fluctuating pressure field contains a very intense component having 
twice the fundamental frequency. 

The bubble in Fig. 7 is only slightly larger than the previous one, 
and motions of both are essentially equal. 
right side, and outlines of the inner wall surface can be seen near the bubble 
and to the right. 
The surface of this bubble is distorted during each cycle by deep instability 
waves. The maximum distortion that developed during the cycle shown appears 
in Fig. 7g. This instability feature is possibly the same kind seen in Fig. 5, 
but extremely amplified. 

On some frames of the film, one can see that a bubblet is being pinch- 
ed off by a local instability. 
the large bubble. Apparently, t h i s  process establishes a different equilibrium 
bubblet concentration for each value of ua2/v. 
and from the main bubble along looped paths (Remenyik 1970). 

e.g., the shapes of bubblet indicated in Fig. 7h and i) , and one may observe 
that the second harmonic is even more pronounced than before in the pulsations 
of both main bubble and bubblets. 

about the final state (Fig. 8). 

This is shown in Fig. 6, where the bubble appears in 

The bubble's oscillation frequency was 53 cps, the average height 

The protrusion at the bottom is a characteristic feature of this 

It was observed, however, that an unusually 

The protrusion in Fig. 6 is larger than average. Al- 

Photographs indicate that 

This method leads to the conclusion that bubblets oscillate very nearly 

Also, both main bubble and bubblets 

5. 
The view in Fig. 7 is from the 

The photographs show the upper portion of the bubble surface. 

In a few other frames, bubblets coalesce with 

The bubblets drift steadily to 

The local states of strain in the liquid affect bubblet shape (compare, 

6. When ua2/v was substantially increased, surface instability brought 
The bubble disintegrated completely into a 
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turbulent cluster of bubblets. The container used was of Plexiglas, had a 6.5 
in. inside diameter and a 1/2 in. wall thiclmess, and is shown in Fig. 1 mount- 
ed on the vibration exciter. The liquid was methyl alcohol, 20 in. deep. 

from the side of the camera. It oscillated 126 times per second and it had an 
a roximate mean diameter of 5.6 an. 

The cluster is shown in rear view, and the flood lamp illuminated it 

If R is hglf the cluster diameter, T WR /v = 6.42 x 105. 
A cloud of bubblets surrounding the cluster extended about a cluster- 

diameter beyond the apparent limits visible in Fig. 8. The less-densely popu- 
lated region of the cloud did not show up on film because of applied illumina- 
tion. 

cluster in a steady but violently turbulent stream. 
cluster along paths resembling dipole flow, and plunged back into the cluster's 
tap. 

threads. 
stationary a short distance in front of the first. 

Wlbblets forming the cloud were being expelled at the bottom of the 
They then circulated the 

lis intersecting straight lines visible in the photographs were 
One was attached to the outside container surface, and the other was 

Ac- 

I wish to thank Robert F. Braswell for editing the manuscript, and the staff 
of the Photographic Services of the University of Tennessee for photographic 
reproduction of the film frames. 

Bjerknes, V. Die Kraftfelder, Braunschweig: Friedrich Vieweg & Sohn, 1909. 

Remenyik, C. J. Bubbles, Steady Streaming and Surface Instability in Vibrated 
Liquid Columns, Proceedings of the 1970 Heat Transfer and Fluid Mechanics 
Institute, 1970, Stanford University Press. 
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Fig. 2 Cubical container 
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Fig. 3 Small, nearly spherical  , 

bubble. d 2 / v  = 0.5. 
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Fig. 5 Bubble with slight surface 
instability. u 2 / v  = 50. 



Fig. 6 Partially disintegra 
bubble with irregula 
surface instabilitie 
wa2/v = 75. 
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Fig. 6 continued 
Partially disintegrated bubble with 
irregular surface instabilities and 
bubblet cloud of periodically vary- 
ing darkness. m 2 / v  = 75. 
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Fig. 7 Partially disintegrated 
bubble with very large 
instabilities. u 2 / v  is 
somewhat larger than 75. 
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Fig. 8 Cluster of bubblets. 
WRZ/V 2 6.42 x 105. 
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ON THE GROWTH AND COLLAPSE OF 

VAPOR BUBBLES AT LIQUID/LIQUID INTERFACES 

William E. Kastenberg 
Ivan Catton 

Energy and Kinetics Department 
School of Engineering and Applied Science 
University of California, Los Angeles 

I. INTRODUCTION 

The study of the thermal interaction initiated by quenching a hot 

liquid in a cooler one has recently received a great deal of attention. 

The subsequent behavior is important in the metal foundry industry, the 

liquid natural gas industry and the nuclear reactor industry. 

latter, the primary problem is the thermal interaction between molten 

fuel (usually uranium oxide) or stainless steel and the coolant (water or 

sodium). This thermal interaction is characterized by I) high pressures 

and significant vapor production for the case of molten metal and water, 

2) low pressures and efficiencies for the case of molten uranium and 

sodium, and 3)'significant surface enhancement or fragmentation of the 

hot material for both. 

For the 

The parametric models (computer simulation) of Wright et al. [l] and 

Caldarola [2]  can be made to match the pressureltime histories for each 

case with a suitable adjustment of heat transfer coefficients. However, 

these adjustments are made with little physical basis. 

[3] has proposed a criterion for which a full scale vapor explosion can be 

predicted. As mentioned above, surface enhancement or fragmentation occurs 

in any case. 

In addition, Fauske 

At the present time, the phenomena of fragmentation is not well under- 

stood. Several theories have been proposed and are reviewed by Caldarola 
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and Kastenberg [4]. I n  t h a t  paper, a model, based upon bubble vapor growth 

and col lapse,  w a s  presented t o  descr ibe the  fragmentation process. The 

bas i c  hypothesis is t h a t  microjets  formed during the  col lapse of vapor f i lm  

a t  the l i qu id / l i qu id  in t e r f ace ,  contain enough k i n e t i c  energy to penetrate  

and fragment the molten material. 

The object ive of t h i s  paper is t o  descr ibe a set of experiments which 

are being conducted t o  study the  fragmentation process. 

experiments, presented as a set of s t i l l  photos, duplicated from high-speed 

Resul ts  of these 

motion p i c t u r e  films are discussed. Some preliminary conclusions, based 

upon these experiments are also given. 
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11. DESCRIPTION OF EWERIMENTS 

A series of experiments with simulant metals (tin, aluminum and lead) 

Typically, the metals were heated above their melting and water were run. 

point in a graphite crucible. 

atmosphere into water at various degrees of subcooling. 

pictures (3,000-5,000 frames per second) were employed to reveal the thermal 

interaction. 

They were then dropped through an argon 

High speed motion 

The general results can be summarized as follows. 

70°C (3OoC subcooled) a vapor film formed at the liquidlliquid interface. 

This was followed by apparent collapse and then violent mixing, distortion, 

high pressure and the spewing out of debris. Post mortem inspection showed 

that 90% of the molten material had formed a fibrous material. For water 

above 7OoC, stable film boiling was observed, with little or no interaction. 

Post mortem inspection yielded large, smooth pieces of solid metal in the 

form of drops. 

For water below 

To simulate the low conductivity oxide fuels, a series of experiments 

These experiments yielded extremely vio- with molten salt were conducted. 

lent interactions, indicating that some sort of chemical interaction had 

taken place. 

Argonne [ 5 ] .  

This is atypical of the UO2/8odium experiments conducted at 

.. . 
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111. EXPERIMENTAL RESULTS 

In Figure 1, a reproduction of one frame of a high speed motion picture  

In  t h i s  case, molten t i n ,  at 580'C is being dropped in to  80'C is shown. 

water. This vapor fi lm 

is stable ,  during the descent and when the metal comes to  rest on the bottom 

container. 

t ion  through the catcher on the bottom. 

three pieces of smooth debris of roughly equal mass. 

The molten t i n  is completely encapsulated i n  vapor. 

The sample loses  heat by radiation through the f i lm and conduc- 

The post mortem inspection yielded 

Figure 2 shows a s t r i p  taken sequentially from a run with the molten 

t i n  a t  580'C and the water at 2OoC (80' subcooled). As shown i n  the la rger  

photos, an unstable vapor f i lm is formed about the  molten sample as it makes 

its descent. In  frame number two of the second s t r i p  (smaller pictures) the 

f i lm has par t i a l ly  collapsed. 

a l so  shown i n  the following frame. 

rapid production of vapor wdth a large pressure pulse. 

of t he  vapor l iqu id  in te r face  indicates  that  the driving mechanism fo r  the 

interact ion is of a scale  much smaller than the molten metal drop s ize .  When 

the frames are viewed i n  motion, the surface appears t o  be pushed out by je ts  

of vapor or iginat ing inside the interact ion region. This could be postulated 

t o  be the result of collapsing bubbles and the  resul t ing microjet of water 

An unstable microjet hae appeared. This is 

By frame 4 of the second set, there is 

The mottled appearance 

penetrating the molten material and vapor production. 

An in te res t ing  phenomena is observed i n  the th i rd  column of Figure 2. 

The pressure wave created by the  rapid expansion is ref lected off the  con- 

ta iner  w a l l  and in t e rac t s  with the vapor zone. 

pressure wave is seen i n  the several  frames following the f i r s t  frame. 

vapor zone is seen t o  decrease i n  size. 

cates fur ther  vapor production, violent  mixing and fragmentation. 

The e f fec t  of the ref lected 

The 

The remainder of the sequence indi- 
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This film strip is typical for metal/water reactions where the water 

is highly subcooled. 

The next sequence, depicted in Figures 3 and 4, is for molten salt 

(NaC1) and water. Inspecting the strip, it is seen that an interaction 

takes place as soon as the sample hits the surface. A full scale vapor 

explosion takes place, with rapid mixing, high pressure, and water being 

forced up into the furnace area. 

when running the movie at reduced speed. 

Five distinct pressure pulses are observed 

These are difficult to visualize 

in the movie strip. 

concluded that some chemical interaction may have taken place. 

Because of the violent nature of this run, it was 
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IV. CONCLUSIONS 

As a result of these experiments the following conclusions can be made. 

First, for the case of molten metals (tin, aluminum and lead) and subcooled 

water (below 7OoC), collapse of the vapor film triggers the fragmentation 

process. 

Third, that while the vapor collapse triggers the event, the film speed is 

too slow to observe the action of the microjet on the surface. Fourth and 

finally, nothing can be concluded for the low conductivity case (i.e., 

extrapolation of U02) because of the apparent chemical interaction present in 

the salt system. 

sodium or water interaction. 

Second, above 7OoC, the stable vapor film inhibits fragmentation. 

This is not expected to occur €or a molten U02 coolant, 
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Fig. 2. Molten tin at 58OoC into H20 at 2OoC yielding unstable 
vapor film with subsequent fragmentation. 
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Fig. 3. I n i t i a l  stages of molten s a l t  into water yielding 
chemical reactions. 



Fig. 4. Final stages of molten salt into water with chemical 
reaction. 
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AN ANALYSIS OF OSCILLATIONS OF A WATER DROPLET 

UNDER LOW GRAVITY CONDITIONS 

0. H. Vaughan and R. E. Smith 
Aerospace Environment Division/Space Sciences Laboratory 

NASA/Marshall Space F1 i g h t  Center 
Huntsvi l le, Alabama 35812 

and 

The University o f  Alabama i n  Huntsv i l le  
Huntsvi l le, Alabama 35807 

R. J .  Hung and S. T. Wu 

ABSTRACT 

Astronaut Will iam R. Pogue conducted some water droplet  o s c i l -  
I n  l a t i o n  demonstrations on the Skylab 4 mission i n  low ear th  o rb i t .  

one of the demonstrations he used a soda straw t o  cause the droplet, 
attached t o  a f l a t  plate, t o  osc i l la te .  Marker pen i n k  was added t o  
the droplet t o  enhance photography using an on-board TV camera. The 
drop, which was 2.54 cm high and 3.52 cm wide, was observed t o  have 
a natural o s c i l l a t i o n  frequency o f  1.3 Hz. The demonstration was 
photographed w i t h  an on-board TV camera t o  record the o s c i l l a t i o n  
of the droplet  and dissipation. We were able t o  obtain excel lent 
data on the change i n  amplitude w i th  time from the observations. An 
analysis was performed using these photographic data and a theoret ica l  
model was developed f o r  determining the o s c i l l a t i o n  frequency, wave- 
length, surface tension and damping character is t ics  o f  the water droplet  
when attached t o  a f l a t  plate. The theoret ica l  model and these obser- 
vation data are i n  good agreement. 
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I. INTRODUCTION 

Experiments performed i n  an orbiting spacecraft under low gravity 
conditions a1 low observations of phenomena which normally cannot be done 
i n  a terrestrial  laboratory. An example of such an observation is that 
of the impact of two spheres of water which are not supported by either 
an aerodynamic force due t o  a flowing column of a i r  or held i n  position 
w i t h  an encumbering supporting apparatus. Either of these two techniques 
tends t o  dampen the oscillations of the spheres of water and to mask 
other types of phenom. The natural or free oscillations of water drops 
and other phonema are of special interest t o  the cloud physicist and other 
f l u i d  mechanics researchers. 

interactions. Particularly, the mechanisms which occur during the 
creation of rain, such as the rebound o f  drops, coalescence of drops, 
splintering after impacts, oscillation breakup, electrical effects, etc. , 
are a l l  of special interest. To study these mechanisms, the Skylab 4 
crew was requested t o  do some f l u i d  mechanics type science demonstrations 
during their  long duration mission so that natural oscillations and other 
phenomena of water droplets could be observed. 

This  paper presents results of a demonstration conducted by 
astronaut William R. Pogue t o  study water droplet oscillations i n  low 
earth orbit. 
a f l a t  surface, and caused i t  t o  oscillate. The droplet had been con- 
taminated w i t h  marker pen i n k  t o  enhance i t  for photography using an 
on-board TV camera. An analysis was performed using this photographic 
data and a theoretical model was developed t o  determine the oscillation 
frequency, wavelength, surface tension and damping characteristics of 

. thewaterdroplet attached t o  a f l a t  plate. A comparison between 
laboratory surface tension and experiment and the value calculated from 
this experimental observation was made w i t h  good agreement. 

Atmospheric microphysics deals w i t h  droplet and droplet-droplet 

In this demonstration he perturbed a droplet, attached to 

I I. EXPERIMENTAL ARRANGEMENTS 

The hardware used for this demonstration consisted of on-board 
medical type syringes, pieces of tape attached to dr inking  straws, a pad 
of ruled paper, marker pen wri t ing i n k ,  the teflon coated f l a t  surface 
o f  the ED 52 "Web formation i n  zero gravity" spider cage, and the on- 
board TV camera. The water used i n  this demonstration was colored, t o  
enhance the photography, by adding a small amount of the marker pen i n k .  
During the demonstration a water droplet, attached to a f l a t  surface, 
was caused t o  oscil late by motion of a soda straw. By observing the 
change i n  amplitude w i t h  time we were able t o  obtain the data required 
t o  verify the applicability of a proposed theoretical model. 

In the present investigation, the film, taken w i t h  the on-board 
TV camera, was studied and measurements of the characteristics of the 
drop oscillations were made using a Vanguard film analyzer. The amplitude 
and wavelength of the oscillations were determined directly from the film 
using appropriate scale factors. The frequency of oscillations was 
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determined by counting the number of frames that were observed during 
the time interval between the time that the water drop underwent 
deformation and returned t o  i t s  original shape and then d iv id ing  this 
count number by the TV camera framing rate (30 framedsec). 

water droplet attached t o  the f l a t  surface are presented i n  F i g u r e  1. 
The numbers on the pictures i n  the figure show the sequence of TV 
camera frames taken i n  the Skylab demonstration. Picture number 1 
i s  a t  the moment when a d r i n k i n g  straw was inserted in to  the center 
of the water drop attached t o  the f l a t  surface. Picture numbers 
4, 6, 9 and 12 show the soda straw being pulled o u t  of the water drop, 
and picture number 13 shows the moment when the soda straw l e f t  the 
surface of the water drop. Picture number 14 shows the oscillation 
of the water drop a t  i t s  maximum amplitude r i g h t  after the soda straw 
completely l e f t  the surface of the drop while picture number 28 shows 
the drop a t  i t s  minimum amplitude. Picture numbers 30, 33, 34, 35, 
36, 37 and 38 show how the water drop increased i ts  amplitude again 
and picture number 40 shows the moment when the water drop just  completed 
one cycle of oscillation and returned t o  i t s  maximum amplitude. 

t o  measure the frequency and wavelength of the oscillations and how 
these oscillations decay w i t h  time. 

Some selected frames of the various modes of the oscillating 

Analysis o f  these pictures frame by frame give us an opportunity 

I I I, THEORETICAL MODEL 

A theoretical calculation for the oscillation of free floating 
l i q u i d  droplet was given by Lord Rayleigh (1879) almost a hundred 
years ago. Recently, Nelson and Gokhale (1972) reported an experi- 
mental study o f  small amplitude natural droplet oscillations w i t h  drop- 
l e t  sizes from a few hundred micrometers t o  millimeters i n  a vertical 
wind tunnel study, and concluded that the agreement between experi- 
mental results and theoretical calculation given by Rayleigh was good. 
The present study concerns oscillations of a water droplet attached 
t o  a f l a t  plate rather than oscillations of a free floating droplet, and 
the size of the droplet is several cm rather than a hundred m. I t  
is  interesting t o  study the present experiment t o  see how well the 
data agrees w i t h  theoretical models. 

The theoretical model is based on the concept €hat fluid 
surfaces tend t o  be i n  equilibrium when the surface tension forces are 
balanced bythefluid pressure. If we assume that the amplitude of the 
oscillations is small compared t o  the wavelength, then the boundary 
conditions on the velocity potential JI for the rectangular coordinates 
can be written (Landau and Lifshitr, 1959) 
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where p is the density of the fluid and a is the surface tension coef- 
ficient. If we consider a plane wave propagated along the x-axis, then 
the solution of the system can be assumed t o  be i n  the form 

where A is the amplitude, k is the wave number, and w i s  the circular 
frequency of the wave. The relation between k and w which is called the 
dispersion relation can be obtained by s u b s t i t u t i n g  Equation (3.2) into 
the boundary condition (3.1) 

! 

j 

Since w = 2nf where f is the oscillation wave frequency i n  Hz, we have 

(3.4) 

I t  is important t o  point ou t  that a plane wave solution as we 
have shown i n  equation (3.2) may not be true when the radius of curvature 
of the oscillating fluid i s  on the order o f  the wavelength of the 
oscillations. In this case, spherical harmonics rather than a plane 
wave solution i s  more suitable for describing the oscillation of the 
droplet. For the case of a spherical droplet  oscillation of an incom- 
pressible fluid under the action o f  surface tension force, the boundary 
condition shown i n  equation (3.1) i n  rectangular coordinates can be 
written i n t o  spherical coordinated as follows: 

If we prostulate a solution i n  the form of a spherical wave which 
satisfies the spherical harmonic function o f  the form: 

w i t h  L = 0, 1,  2, *, and m, *la k2,  23, kt and using the 
spherical harmonic function 
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where P r  (cos 8) i s  an associated Legendre function. Then knowing that 
the spherical harmonics Y, satisfies 

we now have the relation 

Subs t i t u t ing  the relations w=2nfs and R = d/2, where d is the diameter 
of the spherical droplet. equation (3.9) becomes 

(3.10) 2 a a (a-1) (%+2) f2 = 
n2 p d S  

which agrees w i t h  the formula obtained by Rayleigh (1879). 

oscillations is 8=2. In the present study, the wave mode of oscillation 
observed for the water droplet attached t o  the f l a t  surface, i s  a single 
mode which is  equivalent t o  8 = 2  for the s herical harmonic case. By 
making a comparison between equations (3.4y and (3.10) and substituting 
k = Pn/A and A=nd/2 i n  equation (3.4), we find that the plane wave 
solution and the spherical harmonic solution are equivalent for 11- 2. 
For the case of multi-modes oscillations derivations between the plane 
wave solution and spherical harmonic solution becomes apparent. Table I 
shows the percentage deviation between these two solutions. The 
maximum deviation shown i s  11% when 8 = 4  w i t h  the deviation gradually 
decreasing as 8 increases. 

and the f l a t  surface is  close t o  712, and there i s  no indication shown 
i n  the film obtained from Skylab that the contact line between the 
fluid and solid surface moved as the water droplet oscillated. This  is 
the fundamental assumption we have made for boundary conditions i n  which 
we assume that the velocity potential vanishes on the contact line. If 
the contact line moves, a s ecial justification i s  necessary (West, 
1911; Huh and Scriven, 1971f. 

Physically, the surface tension a is  a measure of the work done 
per u n i t  area t o  balance the pressure difference between the two sides 
of the fluid. T h i s  implies that a increases when the pressure 
difference increases, and a decreases when the fluid is contaminated 
w i t h  impurities. 

I t  is clear that the fundamental mode of the spherical harmonic 

In the present study, the contact angle between the water droplet 

I .  
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Furthermore, l e t  us now calculate the energy dissipation of droplet 
osc i l la t ions.  
the k ine t ic  and the potential energy. Thus, the energy dissipated per 
u n i t  time i n  the droplet i s  

I n  t h i s  case the mechanical energy, Emech, includes both 

wlJere uij i s  the viscous stress tensor which i s  defined 

(3.11) 

(3.12) 

and v i s  the ve loc i ty  and V i s  the volume of the f l u id .  Here rl and 5 
are ca l led coefficients of f i r s t  and second viscosity, respectively. 
Under the condition o f  an incompressible f l u i d  (water droplet), equation 
(3.11 ) becomes 

(3.13) 

If we assume tha t  during the osc i l l a t i on  of the l i q u i d  droplet the volume 
o f  the surface region o f  the rotat ional  f low i s  small and that  the 
ve loc i ty  gradient i s  not large, then the existence o f  the region o f  
ro tat ional  flow may be ignored. I f  the in tegrat ion i s  taken over the 
whole volume o f  the f l u i d  which moves as i f  i t  were an ideal f l u id ,  then 
we have potential flow, 

so that  

b c h  

(3.14) 

(3.15) 

I n  the present analysis we 
o f  energy dissipation, but 
respect t o  t ime.  By using 
time f o r  periodic motion 

are not interested i n  the instantaneous value 
the mean value o f  energy dissipation wi th  
the de f i n i t i on  of mean value wi th  respect t o  

f $ ( u t )  d t  (3.16) 
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and the wave form shown i n  equation (3.2), we have the mean value of 
mechanical energy 

-80 k' <$'> dV . I <irnech> = 

Now, the mean value of mechanical energy i s  

whence 
r 

(3.17) 

(3.18) 

I t  is known that the energy of the wave decreases according t o  the low 

(3.19) 

since the energy i s  proportional t o  the square of the amplitude where the 
amplitude decreases w i t h  time as 

(3.20) A = A o e  - Y t  

Here A, is the ini t ia l  value of the amplitude and Y i s  the damping rate 
o f  the wave. Thus, the damping rate obtained from equations (3.17) and 
(3.18) is 

- 2 n k 2  - -  
P 

IV. RESULTS AND DISCUSSIONS 

(3.21) 

We were able t o  ob ta in  measurements of the natural frequency of 
the oscillations o f  the droplet attached to a f l a t  surface, and the size 
o f  the droplet from the film. As we have stated earlier,  the phenomena 
of fluid-solid contact line i s  always a problem when contact line moves 
(Huh and Scriven, 1971). T h i s  i s  because the movement of fluid-solid 
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contact line violates the basic boundary conditions. Fortunately, after 
careful examination of Skylab films, we found that there is no indication 
that the contact line between the fluid and solid surface moved when the 
water droplet oscillated in the present case. The natural frequency of 
the oscillations as measured was 1.3 Hz for the contaminated water droplet 
(2.54 cm in height and 3.52 cm in width) attached to a flat surface. By 
using the observed natural frequency and wavelength, X (E 2dk) = 6.1 cm, 
determined from the Skylab demonstration film, the surface tension of the 
droplet oscillation can be obtained from the following relation based on 
equation (3.4) or equation (3.10) with E = 2  

f2 X’ 
a = +  

= 61 dynes/cm. 

I 

(4.1 1 

This value is for the surface tension for water contaminated with marker 
pen ink while the surface tension for pure water at 20’ C is 72 dynes/ 
cm. 

A laboratory measurement of the surface tension of a repro- 
duction of the Skylab water which i s  contaminated with marker pen ink 
was made at the NASA/Marshall Space Flight Center and gave a value of 
a = 60 dynes/cm which is in good agreement with.Skylab demonstration 
value. 

Calculation of the dissipation rate of the droplet oscillation 
is rather straightforward by substituting the observed wave number in 
equation (3.21). It is 

y = 2.05 x 

= 3.26 x 10” 
when the viscosity coefficient of 
(TI = 0.01 cm2/sec). This damping 
corresponds to a dissipation time 

rad/sec 

Ht 
pure water at 20’ C is used 
rate of the droplet oscillation 
of 306 seconds. 

Using the initial amplitude of the droplet oscillations as 
measured on the film and equation (3.20), we attempted to compare the 
actual damping rate curve with a theoretical curve, and our results 
are shown in the Figure 2. Although we were only able to observe 
the oscillations of the droplet for 22 seconds, there is good agree- 
ment between the actual dissipation rate and the theoretical curve. 

assumption that the wave amplitude is small compared with the wave- 
length. The maximum amplitude of the droplet oscillation is 7% of the 
wavelength which substantiates the validity of the assumptions used in 
the development of the theoretical model. 

In the present analysis, the theoretical model is based on the 
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TABLE 1 

0.10 

0.085 

COMPARISON OF THE PLANE WAVE SOLUTION AND 
SPHERICAL HARMONIC SOLUTION 

1 2  0.0 

1 4  0.11 

0.080 

0.065 

15 0.055 

I 0.043 I 

I 0.012 I 
I loo I 0.009 

*Deviation = 2 j p ~  ane wave - f21spherical harmonic 

f21plane wave 
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Fig. 1. Skylab 4 Science Demonstrations of Selected Sequences of the Oscillating 
Water Droplet Attached to the Flat Surfaces in a Low Gravity Environment. 
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LIQUID DROP BEHAVIOR IN WEIGHTLESSNESS FROM SKYLAB* 

Tommy C. Bannister 

and 

Sidney V. Bourgeois 

NASA-Marshall Space Flight Center, Huntsville, Alabama 35812 

Lockheed Missiles & Space Company, Inc , Huntsville, Alabama 35807 

ABSTRACT 

Several science demonstrations were performed on the Skylab IV mission 
on the behavior of typically - 100 ml drops of a water and water/soap solution. 
Symmetric and antisymmetric oscillations were observed. Also, other phe- 
nomena were observed, including drop collisions, rotational instability and 
dampening of oscillations. 
The film shown was a seventeen minute composite of selected sequences. 

A total in excess of two hours of data was obtained. 

DISCUSSION 

A 17-minute film was shown which consisted of selected sequences from 
Skylab IV science demonstrations TV- 101, Liquid Floating Zone, and TV- 107, 
Fluid Mechanics Series.  
these demonstrations by the Skylab IV crew of Ed Gibson, Bill Pogue and Gerald 
Car r .  

Over two hours of TV video tape were obtained on 

The film contained the following five segments: 

0 Oscillation and damping of a free-floating, 100 cc spherical 
drop of marker  ink-doped water which was initially per- 
turbed into an ellipsoid. 

Same as preceding with a soap-water solution. 
0 Impact and coalescence of two Tang-water globules each 

30cc in size. 

0 Rotation and breakup of a 100 cc water drop. 

0 Rotational and longitudinal stability of Tang-water and 
soapy water cylindrical floating zones. 

-4 Each of these sequences exhibit liquid dynamics in an environment of 10 
gEarth, 5 psi, 70°F, and 70% N2-30% 0 2 .  
comments from the astrounauts as they performed the experiments in Skylab. 

The film had sound and contained 

* 
Film presented a t  International Colloquium on Drops and Bubbles, California 
Institute of Technology, Pasadena, California, 29 August 1974. 
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I 

! 

Demonstration TV- 101, Liquid Floating Zone, was proposed by Dr. 
John Carruthers of Bell Research Laboratories, Murray Hill, New Jersey. 
It was performed and recorded on TV video by Science Pilot  Ed Gibson. 
This demonstration simulates an important method of growing crystals and 
was done to define the stability of the liquid zone under a steady rotation rate 
of about 30 rpm as well as to obtain data on the instability modes and convec- 
tion patterns. This information is important in the utilization of this tech- 
nique for growing crystals both on the ground and in space in the planned 
Space Laboratory. 
zones of varying lengths. 
using foams of water, soap solution and air for  the zone. 
itudinal vibration characteristics of the floating zones were also investigated. 
Measurements from the flight film a r e  being made for thirty-nine different 
rotation sequences of which twenty-four were stable and fifteen were unstable 
and broke. 
zone deformation versus time for each sequence. 
from the film of several longitudinal vibration sequences. 
stable mode which was exhibited in the film sequence by the rotating zone was 
a nonsymmetric 'lC1l shape, whereas previous Plateau experiments and theo- 
retical analyses lead to axisymmetric shapes (Ref. 1). Rayleigh's cr i ter ia  
for the maximum stable zone length (Ref. 1) seems to be valid for the zones 
shown in the film Sequence. 

Specifically, the demonstration consisted of rotating water 

In addition the long- 
The effect of viscosity on the zone was studied by 

The measurements include the rotation rate versus time and the 
Data a r e  also being taken 

The preferred 

Demonstration TV- 107, Fluid Mechanics Series, consisted of several 
fluid demonstrations grouped under one heading. 
Ms. Barbara Facemire and Mr. 0. Vaughan of MSFC; Dr. Sid Bourgeois of 
Lockheed Missiles and Space Company, Huntsville, Alabama; and Dr. T. F ros t  
of the General Electric Company, Valley Forge, Pennsylvania. 
Pilot Ed Gibson and Pilot Pogue recorded this demonstration on TV video. 
It was essentially a ser ies  of tests to obtain data on fluid oscillation times, 
dampening times, rotational instability, wetting characteristics, internal 
vortices and fluid flow patterns in liquid drops under microgravity. 
two hours of excellent data were obtained. 

The investigators were 

Both Science 

Over 

Quantitative measurements are in the process of being made from the 
film of these Skylab IV fluid mechanic science demonstrations. These include 
the frequency and damping of oscillations of different size liquid droplets, the 
approach velocity and frequency of oscillation for the droplet coalescence 
demonstrations and the deformation of drops during the rotation and breakup 
demonstration. 
urements and are being analyzed qualitatively. 

The drop oscillation sequences shown in the film indicate that Lord 
Rayleigh' s classical analysis (Ref. 1) of the problem accurately predicts the 
effect of surface tension on the vibration frequency of free-floating water 
drops. The damping factor for these oscillations on Skylab IV, however, do 
not seem to agree with Lamb's analysis (Ref. 2 )  of the viscous damping of 
free-floating, spherical drops undergoing ellipsoidal oscillations. This is 
probably due to the rather large exictations to which the drops were exposed. 

Other demonstrations are not amenable to quantitative meas- 
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The impact demonstrations indicate that a minimum velocity is neces- 
There is also an 

Since 
s a r y  to overcome surface forces and affect a coalescence. 
indication that electrostatic effects may occur in some coalescences. 
quantitative data can not be obtained in many of the impact demonstrations, 
especially when impacts occur without coalescence, cr i ter ia  for the coal- 
escence of liquids in low-g will be difficult to determine. 

The slow mixing of the liquids after impact and the dogbone shape of a 
droplet upon rotation demonstrate a small amount of internal circulation of 
a freely floating fluid in a low-gravity environment. This is an important 
observation which had not been predicted and could prove very significant for 
space processing applications. 

The injection of air into liquid globules demonstrates the effect of com- 
This technique also demonstrates the 

Several syringes of 
pressible air in damping oscillations. 
feasibility of forming hollow thin-walled liquid spheres. 
air were injected into a water globule forming a single sphere of air inside 
the liquid globule. 

The difficulty of handling freely floating liquids and the complexity of 
the fluid motion becomes clear while viewing these demonstrations and 
listening to the comments of the astronauts. In the post-flight debriefing 
the astronauts mentioned that a lot of time was necessary for learning how 
to handle fluids and recommended that non-wetting surfaces be used to 
handle fluids since on a wetting surface the fluid spreads, preventing the re- 
lease of f ree  floating globules. They also noted that air currents had a sig- 
nificant effect on free-floating globules, making it difficult to position them. 
However, even with these difficulties the astronauts, after an initial learning 
period, became proficient a t  maneuvering the liquids and performing demon- 
strations. 

These demonstrations were used to f i l l  extra time during the Skylab 
flights and were limited to on-board hardware. Data from the fluid mechanic 
demonstrations consisted only of the astronaut's voice transmission and tele- 
vision transmission. 
practical information was obtained on fluid motion and handling in low-g envi- 
ronments. This type of information will be beneficial to the design and develop- 
ment of many future space processing, cloud physics, and other related fluids 
handling programs. 

REFERECNG 

1. 

Even with these constraints, a great deal of basic and 

Carruthers,  J. R., and M. Grasso, "The Stabilities of Floating Liquid Zones 
in Simulated Zero Gravity," Journal of Crystal Growth, Vol. 13/14, 1972. 

! 

2 .  Lamb, Horace, Hydrodynamics, 6th ed., Dover, New York, 1945. 



632 

PARTICIPANTS 

I 

i 

Acrivos, Andreas 
Dept. Chemical Ehg. 
Stanford Univ. 
Stanford, CA 94305 

Alonso, C. T. 
Bldg. 71 
Lawrence Berkeley Labs 
Berkeley, CA 94720 

Apfel, Robert E. 
Dept. Eng. Appl. Sc i .  
Yale Univ. 
New Haven, CT 06520 

I 
Ashkenas, Harry I. 
M/S 183-601 
J.P.L. 
Pasadena, CA 91103 

Ashkin, A. 
Ihn 4E-426 
Bell Telephone Labs 
€IoIolmdel, NJ 07733 

Bencala, Ken 

Calif. Inst. Tech. 
Pasadena, CA 91109 

MIS 208-41 

Berger, Melvyn S. 
362 Blanvelt Rd. 
Pearl River, NY 10965 

Bertram, L. A. 
Division 2642 
Sandia Laboratories 
Albuquerque, NM 87115 

Billet, Michael L. 
Applied Research Lab 
Box 30 

Boulanger , Marc Cass, Glen R. 
Meteorologia Nationale MIS 138-78 
73-77 Rue De Sevres Calif. Inst. Tech. 
92100.Boulogne, France Pasadena, CA 91109 

Bourgeois, S. V. Cattm, Ivan 
Lockheed Missiles/Space Boelter Hall 5531 

Huntsville, AL 35807 Loa Angeles, CA 90024 

Brennen, Christopher Chahine, M. T. 
M / S  301146 MIS 183-301 ' 

Calif. Inst. Tech. J.P.L. 
Pasadena, CA 91109 Pasadena, CA 91103 

Buckholtz, Thomas J. Chan, Paul 
Lawrence Radiation Lab MIS 208-41 
P. 0. BOX 808 L-71 Calif. Inst. Tech. 
Livennore, CA 94550 Pasadena, CA 91109 

Huntsville Res. Ctr. U.C.L.A. 

Busse, F. H. Chang, Chong E. 
Dept. Planetary Scl. 
U.Ce-2.A. Univ. So. Calif. 
Los Angeles, CA 90024 Los Angeles, CA 90007 

Cagliostro, Dominic J. Chen, bo-Hung 
Q - 297 3760 S. McClintock 310A 
Stanford Research Inst. Los Angeles, CA 90007 
Menlo Park, CA 94025 

Dept. Chem. Eng./Mat. 

Chu, Helen 
Carrigan, C. R. 5OA-3115 
Dept. Planetary/Sp. Sci. Lawrence Berkeley Lab 
U.C .L.A. Berkeley, CA 94720 
Lo8 Angeles, CA 90024 

Collfna, Donald J. 
Carruthers, John R. MIS 183-601 
1B-315 J.P.L. 
Bell Telephone Labs. Pasadena, CA 91103 
Murray Hill, NJ 07974 

Carstens, John C. Dept. Mech. Eng. 
109 Nowood Hall Universitv Collene 

Collins, Roy 

State College, PA 16801 Univ. Missouri-Rolla London WCiE 7 JE-England 
Rolla, MO 65401 



Concus, P. 
Lawrence Berkeley Labs 

Berkeley, CA 94720 

Dauber, Philip M. 
Lawrence Berkeley Labs 
Bldg. 50 
Berkeley, CA 94720 

90-3108 

Davidson, Cliff I. 
MIS 138-78 
Calif. Inst. Tech. 
Pasadena, CA 91109 

Donnelly, Russell J. 
Dept. Physics 
Univ. Oregon 
Eugene, OR 97403 

Dragoo, Alan L. 
Inst. Metals Research 
National Bur. Stds. 
Washington, DC 20234 

Drumond, Alastair M. 
Flight Research Lab 
N R C Canada 
Ottawa, Canada =OR6 

Eaton, Larry R. 

McDonnell Douglas Astr. 
Huntington Bch. 92647 

Eichhorn, Roger 
Dept. Mech. Eng. 
Univ. Kentucky 
Lexington, KY 40506 

Eisner, Melvin 
Dept. Physics 
Univ. Houston 
Houston, TX 77004 

A3-253 ATE0 MIS-28 

633 

Elleman, D. D. 
MIS 183-401 
J.P.L. Johnson Space Ctr. 
Pasadena, CA 91103 Houston, TX 77058 

Gibson, Edward G. 
Code CB 

Elliott, David G. 
MIS 122-123 MIS 180-700 
J.P.L. J.P.L. 
Pasadena, CA 91103 

Estabrook, Frank B. Gough, D. 
MIS 183-601 Inst. Astronomy 
J.P.L. Cambridge Univ. 
Pasadena, CA 91103 Cambridge, England 

Foote, G. B. Griffin, James J. 
N.C.A.R. Dept. PhysicsfAstronomy 
P. 0. Box 3000 Univ. Maryland 
Boulder, CO 80303 

Franz, Gerald J. 
Silencing Tech. Div. 194 MIS 138-78 
Naval Ship RID Ctr. Calif. Inst. Tech. 
Bethesda, MD 20034 Pasadena, CA 91109 

Friedlander, Sheldon K. Happe, Ralph A. 
MIS 138-78 Rockwell Int . D/193-600 
Calif. Inst. Tech. 12214 Lakewood Blvd. 
Pasadena, CA 91109 Downey, CA 90241 

Fymat, Alain L. Harper, Ed 
MIS 183-301 4C-224B 
J.P.L. Bell Telephone Labs 
Pasadena, CA 91103 

Goddard, Frank E. 

Pasadena, CA 91103 

College Park, MD 20742 

Grosjean, Daniel M. 

Whippany, NJ 07981 

Gabris, Edward A. Harper, J. F. 
Code RS Dept. Mathematics 
NASA Headquarters Victoria Univ. Wellington 
Washington, DC 20546 Wellington, New Zealand 

Garg, S. K. Harvey, D. W. 
Systemsf Science1 Software 2039 Port Weybridge P1. 
P. 0. Box 1620 Newport Beach, CA 92660 
La Jolla, CA 92037 



. . .. ... - .. .. ~ ..... . . . . . . . .  

634 

I 

Hashimoto, Lewis K. 
Blacker House 
Calif. Inst. Tech. 
Pasadena, CA 91109 

Heisler, S. L. 
MIS 138-78 
Calif. Inst. Tech. 
Pasadena, CA 91109 

I 

Hilton, Howard T. 
IBM E731025 
Montery - Cottle Rd. 
San Jose, CA 95193 

Ho, Bosco 
MIS 208-41 
Calif. Inst. Tech. 
Pasadena, CA 91109 

Hocking, L. M. 
Dept. Mathematics 
University College 
London, England 

Hsieh, Din-Yu 
Div. Appl. Math. 
Brown Univ. 
Providence, RI 02912 

Huff, Charles F. 
Division 5718 
Sandia Laboratories 
Albuquerque, NM 87115 

Hung, R. J. 
Dept. Mech. Eng. 
Univ. Alabama 
Huntsville, AL 35807 

Jameson, G. J. 
Dept. Chem. Eng. 
Imperial College 
London, S. W. 7 
England 

Janik, Gary 
287 E. California 
Pasadena, CA 91106 

Johnson, Robert E. 
359 s. Wjlson 
Pasadena, CA 91106 

Keller, Stu 

Calif. Inst. Tech. 
Pasadena, CA 91109 

Kelly, Arnold J. 
Exxon Research Labs 
P. 0. Box 45 
Linden, NJ 07036 

MIS 104-44 

Kiang, C. S. 
N.C.A.R. 
P. 0. Box 3000 
Boulder, CO 80302 

Kikuchi, Ryoichi 
Hughes Research Labs 
3011 Malibu Canyon 
Malibu, CA 90265 

Kistler, Alan 
Dept. Mech. Eng. 
Northwestern Univ. 
Evanston, IL 60201 
Kotsovinos, Nikoe E. 

Calif. Inst. Tech. 
Pasadena, CA 91109 
Kovitz, Arthur A. 
Dept. Mech. Eng. 
Northwestern Univ. 
Evanston, IL 60201 
Kumar, S. 
MIS 208-41 
Calif. Inst. Tech. 
Pasadena, CA 91109 

MIS 138-78 

, 

Larson, David J. 
Research Plant 26 
Grunrman Aerospace Corp. 
Bethpage, NY 11714 

Lauterborn, W. 
Third Physical Inst. 
Univ. Gottingen D-34/FRG 
Gottingen, W. Germany 

Leal, Gary L. 

Calif. Inst. Tech. 
Pasadena, CA 91109 

MIS 208-41 

Lebovitz, Norman R. 
Dept. Mathematics 
Univ. Chicago 
Chicago, IL 60637 

Lee, In-Young 
Dept. Meteorology 
U.C.L.A. 
Loa Angeles, CA 90024 

Liu, v. c. 
Dept. Aerospace Eng. 
Univ. Michigan 
Ann Arbor, MI 48104 

Lobl, Elena 
Dept. Meteorology 

Los Angeles, CA 90024 

Mackin, Robert J. 
MIS 186-133 
J.P.L. 
Pasadena, CA 91103 

U.C.L.A. 

Mason, Peter V. 
MIS 183-401 
J.P.L. 
Pasadena, CA 91103 

\ 



635 

McMurry, Peter H. 
MIS 138-78 
Calif. Inst. Tech. 
Pasadena, CA 91109 

Moore, D. W. 
Dept. Mathematics 
Imperial College 
London SW7, England 

Myers, William D. 
Nuclear Chemistry-Dept. 
Lawrence Radiation Labs 
Berkeley, CA 94720 

Neiburger, Morris 
Dept. Meteorology 
U.C.L.A. 
u s  Angeles. CA 90024 

O'Brien, Vivian 
Appl. Physics Lab. 
Johns Hopkins Univ. 
Silver Spring, MD 20910 

Pena, J. 
Dept. Meteorology 
Pennsylvania St. Univ. 
University Park, PA 16802 

Peterson, Tom 

Calif. Inst. Tech. 
Pasadena, CA 91109 

Picketing, William H. 
MIS 180-904 
J.P.L. 
Pasadena, CA 91103 

MIS 208-41 

I Plesset, Milton S. 
Dept. Eng. Science 
Calif. Inst. Tech. 
Pasadena, CA 91109 

Pompa, M. F. 
MIS 125-224 
J.P.L. 
Pasadena, CA 91103 

Prosperetti, Andrea 

Calif. Inst. Tech. 
Pasadena, CA 91109 

Reichman, James M. 
Lawrence Livermore Lab. 

Livemore, CA 94550 

MIS 104-44 

P. 0. BOX 808 L-301 

Remenyik, Carl J. 
Dept. Eng. Science 
Univ. Tennessee 
Knoxville, TN 37916 

Rhomberg, Albin A. 
MIS 183-401 
J.P.L. 
Pasadena, CA 91103 

Roberts, Paul H. 
Dept . Physics 
Univ. Oregon 
Eugene, OR 97403 

Rosenkilde, Carl E. 
Dept. Physics 
Kansas State Univ. 
Manhattan, KS 66506 

Saffren, M. M. 
MIS 186-118 

Pasadena, CA 91103 
J.P.L. 

Sarma, Kalluri R. 
1107 W. 41st Place 
Los Angeles, CA 90007 

Saunders, C. P. R. 
Dept. Physics Umist 
Manchester M60 1QD 
England 

Saville, Dudley A. 
Dept. Chem. Eng. 
Princeton Univ. 
Princeton, NJ 08540 

Scriven, L. E. 
Dept. Chemical Eng. 
Univ. Minnesota 
Minneapolis, MN 55455 

Simpkine, P. G. 
MtS lA-109 
Bell Telephone Labs 
Murray H i l l ,  NJ 07974 

Smyth, Joseph M. 
MIS 183-601 
J.P.L. 
Pasadena, CA 91103 

Somerscales, E. F. C. 
Dept. Mechanical Eng. 
Rensselaer Poly. Inst. 
Troy, NY 12181 

Stephens, James B. 
MIS 11-14A 
J.P.L. 
Pasadena, CA 91103 

Suo-Anttila, Ahti J. 
11607 Sunshine Terrace 
Studio City, CA 91604 

Swiatecki, W. J. 
Lawrence Berkeley Labs 
Berkeley, CA 94720 



636 

Tegart, James 
5439 S. Huron Way 
Littleton, CO 80120 

Tiefenbruck, Grant 

Calif. Inst. Tech. 
Pasadena, CA 91109 

Trefethen, Lloyd M. 
Dept. Mech. Eng. 
Tufts University 
Medford, MA 02155 

M f S  208-41 

Tsang, C. F. 
Lawrence Berkeley Labs 
Berkeley, CA 94720 

Tsang, Leslie 
Ames 
Univ. Calif. San Diego 
La Jolla, CA 92037 

Tu, Yih-0 
IBM Research Labs 
D-K43 
San Jose, CA 95193 

Tulin, Marshall 
Hydronautics, Inc. 
7210 Pindell School Rd. 

Wahlquist, Hugo 
MIS 183-601 
J.P.L. 
Pasadena, CA 91103 

Wake, S. 
Dept. Chem. Eng. 
Calif. Inst. Tech. 
Pasadena, CA 91109 

Wang, Taylor 
MIS 183-401 
J.P.L. 
Pasadena, CA 91103 

Webbon, Bruce 

Ames Research Ctr. 
Moffett Fld., CA 94035 

MIS 239-4 

Westervelt, Peter J. 
Dept. Physics 
Brown Univ. 
Providence, RI 02912 

Whatley, Gary E. 

Calif. Inst. Tech. 
Pasadena, CA 91109 

MIS 208-41 

WilCOX. William R, 
Laurel, MD 20810 

Turnbull, Robert 
Dept. Electrical 
Univ. Illinois 
Urbana, IL 61801 

Van Wijngaarden, 
Tech. Hogeschool 
Postbus 127 

SSC 302 
Univ. So. Calif. 
Los Angeles, CA 90007 

Willson, Richard C. 
2845 Windfall Ave. 
Altadena, CA 91001 

Eng . 

L. 
Twente Wong, C. Y. 

Oak Ridge Nat. Lab. 

Wu, Theodore Y. 
MIS 104-44 
Calif. Inst. Tech. 
Pasadena, CA 91109 

Yankura, G. 
MIS 125-224 
J.P.L. 
Pasadena, CA 91103 

Yatee, George 

Calif. Inst. Tech. 
Pasadena, CA 91109 

Zahn, Markus 
Dept. Electrical Eng. 
Univ. Florida 
Gainesville, FL 32611 

MIS 104-44 

Zana, E. 
MIS 208-41 
Calif. Inst. Twh. 
Pasadena, CA 91109 

Zieg, Kenneth F. 
Time Zero Corp. 
1488 W. 178th St. 
Gardena, CA 90247 

Enschede, Netherlands 

Vrebalovich, Thomas 
New Delhi Wright, F. H. 
Department of State 1250 S. Orange Grove 
Washington, DC 20520 

P. 0. Box X 
Oak Ridge, TN 37830 

Pasadena, CA 91105 




